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From Noel Meyers
Within the pages of this book, you will find the distilled 
wisdom of all the biologists who have gone before you. If 
50 years ago you had known the contents of this book, you 
would have been revered as a genius. Others would have said 
your mind was a once-in-a-generation gift. Now, you are 
learning the materials in your first year of university—such 
have been the advancements in knowledge. Times change, 
knowledge builds and so will yours. 

In this book, we have shaped a story built on the classical 
themes and case studies. We lead you down the pathway that 
your forebears walked before you, in their quest to understand 
the biological world. We have gone further though. We high-
light the unique nature and history of life in the Southern 
Hemisphere, with its radically different solutions to survival. 
We convey to you the notions of deep time that shaped  
Australia’s and New Zealand’s biological legacy. 

Our biological understandings of tomorrow will arise 
through your work and that of others. I know that you will 
work to share a world with future generations better under-
stood, better nurtured and more appreciated than the one we 
entrust to you.

From the US Author Team
We are honoured to present the Eleventh Edition of Campbell 
BIOLOGY. For the last three decades, Campbell BIOLOGY has 
been the leading college text in the biological sciences. It has 
been translated into 19 languages and has provided millions 
of students with a solid foundation in college-level biology. 
This success is a testament not only to Neil Campbell’s original 
vision but also to the dedication of hundreds of reviewers (listed 
on pages xxx–xxxiii), who, together with editors, artists, and 
contributors, have shaped and inspired this work.

Our goals for the Eleventh Edition include:

	 increasing visual literacy through new figures, 
questions, and exercises that build students’ skills in 
understanding and creating visual representations of 
biological structures and processes

	 asking students to practise scientific skills by applying 
scientific skills to real-world problems

	 supporting instructors by providing teaching modules 
with tools and materials for introducing, teaching, and 
assessing important and often challenging topics

	 integrating text and media to engage, guide, and inform 
students in an active process of inquiry and learning.

Our starting point, as always, is our commitment to craft-
ing text and visuals that are accurate, are current, and reflect 
our passion for teaching biology.

Preface

New to This Edition
Here we provide an overview of the new features that we have 
developed for the Eleventh Edition; we invite you to explore 
pages xii–xix for more information and examples.

	 Visualising Figures and Visual Skills Questions 
give students practice in interpreting and creating visual 
representations in biology. The Visualising Figures have 
embedded questions that guide students in exploring 
how diagrams, photographs, and models represent and 
reflect biological systems and processes. Assignable 
questions are also available in MasteringBiology to 
give students practice with the visual skills addressed in 
the figures.

	 Problem-Solving Exercises challenge students to apply 
scientific skills and interpret data in solving real-world 
problems. These exercises are designed to engage students 
through compelling case studies and provide practice 
with data analysis skills. Problem-Solving Exercises have 
assignable versions in MasteringBiology. Some also have 
more extensive “Solve It” investigations to further explore a 
given topic.

	 Ready-to-Go Teaching Modules on key topics provide 
instructors with assignments to use before and after class, 
as well as in-class activities that use clickers or Learning 
Catalytics™ for assessment.

	 Integrated text and media: Media references in the 
printed book direct students to the wealth of online self-
study resources available to them in the Study Area 
section of MasteringBiology. The new online learning 
tools include:
	 Figure Walkthroughs guide students through key 

figures with narrated explanations, figure markups, and 
questions that reinforce important points. Additional 
questions can be assigned in MasteringBiology.

	 Animations and videos that bring biology to life. 
These include resources from HHMI BioInteractive 
that engage students in topics from the discovery of 
the double helix to evolution.

	 The impact of climate change at all levels of the biological 
hierarchy is explored throughout the text, starting with 
a new photo (Figure 1.12) and discussion in Chapter 1 
and concluding with a new Make Connections Figure 
(Figure 56.31) and expanded coverage on causes and effects 
of climate change in Chapter 56.

	 As in each new edition of Campbell BIOLOGY, the Eleventh 
Edition incorporates new content and pedagogical 
improvements. These are summarised on pages. xii–xix, 
following this Preface. Content updates reflect rapid, ongoing 
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and the unit-opening interviews, our standard-setting Inquiry 
Figures deepen the ability of students to understand how we 
know what we know. Scientific Inquiry Questions give stu-
dents opportunities to practise scientific thinking, along with 
the Problem-Solving Exercises, Scientific Skills Exercises, and 
Interpret the Data Questions. 

MasteringBiology, the most widely used online assessment 
and tutorial program for biology, provides an extensive library of 
homework assignments that are graded automatically. In addi-
tion to the new Figure Walkthroughs, Problem-Solving 
Exercises, and Visualising Tutorials, MasteringBiology 
offers Dynamic Study Modules, Adaptive Follow-Up Assign-
ments, Scientific Skills Exercises, Interpret the Data Questions, 
Solve It Tutorials, HHMI BioInteractive Short Films, BioFlix® 
Tutorials with 3-D Animations, Experimental Inquiry Tutorials, 
Interpreting Data Tutorials, BLAST Tutorials, Make Connec-
tions Tutorials, Video Field Trips, Video Tutor Sessions, Get Ready 
for Biology, Activities, Reading Quiz Questions, Student Miscon-
ception Questions, Test Bank Questions, and MasteringBiology 
Virtual Labs. MasteringBiology also includes the Campbell  
BIOLOGY eText, Study Area, Instructor Resources, and Ready- 
to-Go Teaching Modules. See pages xxi–xxiii and  
www.masteringbiology.com for more details.

Our Partnership with Instructors  
and Students
A core value underlying our work is our belief in the importance 
of a partnership with instructors and students. One primary 
way of serving instructors and students, of course, is providing 
a text that teaches biology well. In addition, Pearson offers a 
rich variety of instructor and student resources, in both print 
and electronic form (see pages xx–xxiv). In our continuing 
efforts to improve the book and its supplements, we benefit 
tremendously from instructor and student feedback, not only 
in formal reviews from hundreds of scientists, but also via email 
and other avenues of informal communication.

The real test of any textbook is how well it helps instructors 
teach and students learn. We welcome comments from both 
students and instructors. Please address your suggestions to:

Lisa Urry (Chapter 1 and Units 1–3)
lurry@mills.edu

Michael Cain (Units 4, 5, and 8)
mcain@bowdoin.edu

Peter Minorsky (Unit 6)
pminorsky@mercy.edu

Steven Wasserman (Unit 7)
stevenw@ucsd.edu

changes in technology and knowledge in the fields of 
genomics, gene editing technology (CRISPR), evolutionary 
biology, microbiology, and more. In addition, significant 
revisions to Unit 8, Ecology, improve the conceptual 
framework for core ecological topics (such as population 
growth, species interactions, and community dynamics) 
and more deeply integrate evolutionary principles.

Our Hallmark Features
Teachers of general biology face a daunting challenge: to help 
students acquire a conceptual framework for organising an ever-
expanding amount of information. The hallmark features of 
Campbell BIOLOGY provide such a framework, while promoting 
a deeper understanding of biology and the process of science.  
Chief among the themes of Campbell BIOLOGY is evolution. 
Each chapter of this text includes at least one Evolution section 
that explicitly focuses on evolutionary aspects of the chapter 
material, and each chapter ends with an Evolution Connection 
Question and a Write About a Theme Question.

To help students distinguish the “forest from the trees”, 
each chapter is organised around a framework of three to seven 
carefully chosen Key Concepts. The text, Concept Check 
Questions, Summary of Key Concepts, and MasteringBiology 
resources all reinforce these main ideas and essential facts.

Because text and illustrations are equally important for learn-
ing biology, integration of text and figures has been 
a hallmark of this text since the First Edition. In addition to the 
new Visualising Figures, our popular Exploring Figures and Make 
Connections Figures epitomise this approach. Each Exploring 
Figure is a learning unit of core content that brings together re-
lated illustrations and text. Make Connections Figures reinforce 
fundamental conceptual connections throughout biology, help-
ing students overcome tendencies to compartmentalise informa-
tion. The Eleventh Edition features two new Make Connections 
Figures. There are also Guided Tour Figures that walk students 
through complex figures as an instructor would.

To encourage active reading of the text, Campbell BIOLOGY 
includes numerous opportunities for students to stop and think 
about what they are reading, often by putting pencil to paper to 
draw a sketch, annotate a figure, or graph data. Active reading 
questions include Visual Skills Questions, Draw It Questions, 
Make Connections Questions, What If? Questions, Figure Leg-
end Questions, Summary Questions, Synthesise Your Knowl-
edge Questions, and Interpret the Data Questions. Answering 
these questions requires students to write or draw as well as 
think and thus helps develop the core competency of communi-
cating science.

Finally, Campbell BIOLOGY has always featured scientific 
inquiry, an essential component of any biology course. Com-
plementing stories of scientific discovery in the text narrative 
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Visual Skills Question with Figure 13.6 asks students to identify 
where in the three life cycles haploid cells undergo mitosis, and 
what type of cells are formed. Chapter 14 includes new informa-
tion from a 2014 genomic study on the number of genes and 
genetic variants contributing to height. Figure 14.15b now uses 
“inability to taste PTC” rather than “attached earlobe.” Chapters 
14 and 15 are more inclusive, clarifying the meaning of the term 
“normal” in genetics and explaining that sex is no longer thought 
to be simply binary. Other updates in Chapter 15 include new 
research in sex determination and a technique being developed  
to avoid passing on mitochondrial diseases. New Visualising 
Figure 16.7 shows students various ways that DNA is illustrated. 
Chapter 17 has a new opening photo and story about albino don-
keys to pique student interest in gene expression. To help students 
understand the Beadle and Tatum experiment, new Figure 17.2 
explains how they obtained nutritional mutants. A new Problem-
Solving Exercise asks students to identify mutations in the insulin 
gene and predict their effect on the protein.

Chapters 18–21 are extensively updated, driven by exciting  
new discoveries based on DNA sequencing and gene-editing  
technology. Chapter 18 has updates on histone modifications, 
nuclear location and the persistence of transcription factories, 
chromatin remodelling 
by ncRNAs, long noncod-
ing RNAs (lncRNAs), the 
role of master regulatory 
genes in modifying chro-
matin structure, and the 
possible role of p53 in the 
low incidence of cancer 
in elephants. Chapter 19 
features a new section that 
covers bacterial defences 
against bacteriophages 
and describes the CRISPR-
Cas9 system (Figure 19.7); 
updates include the Ebola, 
Chikungunya, and Zika 
viruses (Figure 19.10) and 
discovery of the largest 
virus known to date. A 
discussion has been added 
of mosquito transmission 
of diseases and concerns 
about the effects of global 
climate change on disease 
transmission. Chapter 20 
has a new photo of next-
generation DNA sequenc-
ing machines (Figure 20.2) 
and a new illustration of 
the widely used technique 
of RNA sequencing  
(Figure 20.13). A new sec-
tion titled Editing Genes 
and Genomes has been 
added describing the 
CRISPR-Cas9 system 
(Figure 20.14) that has 

This section highlights selected new content and pedagogical 
changes in Campbell BIOLOGY, Eleventh Edition.

CHAPTER 1  Evolution, the Themes of Biology, 
and Scientific Inquiry
Chapter 1 introduces Australia’s western pygmy possum, and 
the kind of suspended animation (torpor) it uses to wait out 
poor weather. New text and a new photo (Figure 1.12) relate 
climate change to species survival.

UNIT 1  THE CHEMISTRY OF LIFE
In Unit 1, new content engages students in learning this  
foundational material. The opening of Chapter 3 and new  
Figure 3.7 show organisms affected by loss of Arctic sea ice 
and impacts on Antarctica. Chapter 5 has updates on lactose 
intolerance, trans fats, 
the effects of diet on 
blood cholesterol, 
protein sequences 
and structures, and 
intrinsically dis-
ordered proteins. 
Students learn 
about exoplanets 
and recent potential 
evidence for life on 
Mars. A new Prob-
lem-Solving Exercise 
engages students by 
having them com-
pare DNA sequences 
in a case of possible 
fish fraud.

UNIT 2  THE CELL
Our main goal for this unit was to enhance accessibility for  
students. New Visualising Figure 6.32 shows the profusion of 
molecules and structures in a cell, all drawn to scale. In Chapter 
7, a new figure illustrates levels of LDL receptors in people with  
and without familial hypercholesterolaemia. Chapter 8 includes 
a beautiful new photo of a geyser with thermophilic bacteria in 
Figure 8.17, bringing to life the graphs of optimal temperatures 
for enzyme function. Chapter 10 discusses current research try-
ing to genetically modify rice (a C3 crop) so that it is capable of 
carrying out C4 photosynthesis to increase yields. Chapter 11 
includes a new Problem-Solving Exercise that guides students 
through assessing possible new treatments for bacterial infec-
tions by blocking quorum sensing. In Chapter 12, the mecha-
nism of chromosome movement in bacteria has been updated 
and more cell cycle control checkpoints have been added.

UNIT 3  GENETICS
In Chapters 13–17, we have incorporated changes that help  
students to grasp the more abstract concepts of genetics and their 
chromosomal and molecular underpinnings. For example, a new 

Highlights of New Content
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 Figure 20.14 Gene editing 
using the CRISPR-Cas9 system.
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 Figure 3.7 Effects of climate change 
on the Arctic.
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UNIT 5 � THE EVOLUTIONARY HISTORY  
OF BIOLOGICAL DIVERSITY

In keeping with our goal of improving how students interpret 
and create visual representations in biology, we have added a 
new figure (Figure 26.5, “Visualising Phylogenetic Relation-
ships”) that introduces the visual conventions used in phylo-
genetic trees and helps students understand what such trees 
do and don’t convey. Students are also provided many oppor-
tunities to practise their visual skills, with more than ten new 
Visual Skills Questions on topics ranging from interpreting 
phylogenetic trees to predicting which regions of a bacterial 
flagellum are hydrophobic. The unit also contains new content 
on tree thinking, emphasising such key points as how sister 
groups provide a clear way to describe evolutionary relation-
ships and how trees do not show a “direction” in evolution. 
Other major content changes include new text in Concepts 
26.6, 27.4, and 28.1 on the 2015 discovery of the Lokiarchaeota, 
a group of archaea that may represent the sister group of the 
eukaryotes, new text and a new figure (Figure 26.22) on hori-
zontal gene transfer from prokaryotes to eukaryotes, and new 
material in Concept 29.3 describing how early forests contrib-
uted to global climate change (in this case, global cooling). A 
new Problem-Solving Exercise in Chapter 34 engages students 
in interpreting data from a study investigating whether frogs 
can acquire resistance to a fungal pathogen through controlled 
exposure to it. Other updates include the revision of many 
phylogenies to reflect recent phylogenomic data, new chapter-
opening stories in Chapter 31 (on how mycorrhizae link trees 
of different species) and Chapter 33 (on the “blue dragon,” a 
mollusc that preys on the highly toxic Portuguese man-of-war), 
new text and a new figure (Figure 34.36) on the adaptations of 
the kangaroo rat to its arid environment, and new material in 
Concept 34.7, including a new figure (Figure 34.51) describing 
fossil and DNA evidence indicating that humans and Nean-
derthals interbred, 
producing viable off-
spring. The discussion 
of human evolution 
also includes new 
text and a new figure 
(Figure 34.53) on 
Homo naledi, the most 
recently discovered 
member of the human 
evolutionary lineage.

UNIT 6  PLANT FORM AND FUNCTION
A major aim in revising Chapter 35 was to help students better 
understand how primary and secondary growth are related. 
New Visualising Figure 35.12 enables students to picture growth 
at the cellular level. Also, the terms protoderm, procambium,  
and ground meristem have been introduced to underscore the 
transition of meristematic to mature tissues. A new flow-
chart (Figure 35.24) summarises growth in a woody shoot. 
New text and a figure (Figure 35.26) focus on genome analysis 
of Arabidopsis ecotypes, relating plant morphology to ecology 
and evolution. In Chapter 36, new Figure 36.8 illustrates the 
fine branching of leaf veins, and information on phloem-
xylem water transfer has been updated. New Make Connec-
tions Figure 37.14 highlights mutualism across kingdoms and 
domains. Concept 37.1 expands considerations of Australian 

been developed to edit genes in living cells. Finally, the discussion 
of ethical considerations has been updated to include a recent 
report of scientists using the CRISPR-Cas9 system to edit a gene in 
human embryos, along with a discussion of the ethical questions 
raised by such experiments, such as its usage in the gene drive 
approach to combat carrying of diseases by mosquitoes. In Chap-
ter 21, in addition to the usual updates of sequence-related data 
(speed of sequencing, number of species’ genomes sequenced, 
etc.), there are several research updates, including some early 
results from the new Roadmap Epigenomics Project and results 
from a 2015 study focusing on 414 important yeast genes.

UNIT 4  MECHANISMS OF EVOLUTION
A major goal for this revision was to strengthen how we help 
students understand and interpret visual representations of 
evolutionary data and concepts. Towards this end, we have 
added a new figure (Figure 25.8), “Visualising the Scale of  
Geological Time,” and a new figure (Figure 23.13) on gene 
flow. Several figures have been revised to improve the 
presentation of data, including Figure 24.6 (on reproductive 
isolation in mosquitofish), Figure 24.10 (on allopolyploid 
speciation), and Figure 25.36 (on the origin of the insect body 
plan). The unit also features new material that describes the 
Ediacaran fauna and early life on Earth that we know from 
Australian fossil materials, a new discussion in Chapter 24 
on the impact of climate change on hybrid zones, and a new 
Problem-Solving Exercise in Chapter 24 on how hybridisation 
may have led to the spread of insecticide resistance genes 
in mosquitoes that transmit malaria. The unit also includes 
new chapter-opening stories in Chapter 22 (on a moth 
whose features illustrate the concepts of unity, diversity, and 
adaptation) and Chapter 25 (on the discovery of whale bones 
in the Sahara Desert). Additional changes include new text in 
Concept 22.3 emphasising how populations can evolve over 
short periods of time, a new table (Table 23.1) highlighting 
the five conditions required for a population to be in Hardy-
Weinberg equilibrium, and new material in Chapter 25 
introducing the newly discovered continent of Zealandia, and 
the implications it holds for New Zealand biota.

 

 Figure 34.53 Fossils of hand and 
foot bones of Homo naledi.
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Lake Erie water snake (Nerodia sipedon).
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UNIT 8  ECOLOGY
The Ecology Unit has been extensively revised for the Eleventh 
Edition. We have reorganised and improved the conceptual 
framework with which students are introduced to the follow-
ing core ecological topics: life tables, per capita population 
growth, intrinsic rate of increase (“r ”), exponential population 
growth, logistic population growth, density dependence, spe-
cies interactions (in particular, parasitism, commensalism, and 
mutualism), and MacArthur and Wilson’s island biogeography 
model. The revision also includes a deeper integration of evo-
lutionary principles, including a new Key Concept (52.5) and 
two new figures (Figures 52.23 and 52.24) on the reciprocal 
effects of ecology and evolution, new material in Concept 52.4 
on how the geographic distributions of species are shaped by 
a combination of evolutionary history and ecological factors, 
and five new Make Connections Questions that ask students  
to examine how ecological and evolutionary mechanisms 
interact. In keeping with our goal of expanding and strength-
ening our coverage of climate change, we have added a new 
discussion and a new figure (Figure 52.19) on how climate 
change has affected the distribution of a keystone species, a 
new section of text in Concept 55.2 on how climate change 
affects NPP, a new Problem-Solving Exercise in Chapter 55 
that explores how insect outbreaks induced by climate change 
can cause an ecosystem to switch from a carbon sink to a carbon 
source, a new figure  
(Figure 56.30) on the 
greenhouse effect 
and new text in 
Concept 56.4 on 
biological effects 
of climate change. 
In addition, a new 
Make Connections 
Figure (Figure 56.31) 
on how climate 
change affects all  
levels of biologi-
cal organisation 
includes work from 
a group of Univer-
sity of Queensland 
Researchers who 
have identified what 
may be the first 
recorded extinc-
tion due to climate 
change: the Bramble 
Cay melomys. Additional updates include a new figure  
(Figure 53.25) on per capita ecological footprints, a new  
chapter-opening story in Chapter 54 on a seemingly unlikely 
mutualism between a shrimp and a much larger predatory 
fish, new text in Concept 54.1 emphasising that each partner 
in a mutualism experiences both benefits and costs, new text 
in Concept 54.1 describing how the outcome of an ecological 
interaction can change over time, two new figures (Figures 
54.31 and 54.33) on the island equilibrium model, a new figure 
(Figure 54.34) documenting two shrew species as unexpected 
hosts of Lyme disease, new text in Concept 56.1 comparing 
extinction rates today with those typically seen in the fossil 
record, and a new discussion and figure (Figure 56.23) on the 
restoration of a degraded urban stream.

and New Zealand soils, and introduces some unique adapta-
tions plants use to survive Australia’s old and nutrient-poor 
soils. New Figure 38.3 clarifies how the terms carpel and pistil 
are related. The text on flower structure and the angiosperm 
life cycle figure identify carpels as megasporophylls and stamens 
as microsporophylls, correlating with the plant evolution 
discussion in Unit 5. A revised Figure 39.7 helps students 
visualise how cells elongate. Figure 39.8 now addresses  
apical dominance in a Guided Tour format. Information 
about the role of sugars in controlling apical dominance  
has been added. In Concept 39.4, a new Problem-Solving 
Exercise highlights how global climate change affects crop 
productivity. Figure 39.26 on defence responses against 
pathogens has been simplified and improved.

UNIT 7  ANIMAL FORM AND FUNCTION
A major goal of the Unit 7 revision was to transform how stu-
dents interact with and learn from representations of anatomy 
and physiology. For example, gastrulation is now introduced 
with a Visualising Figure (Figure 47.8) that provides a clear and 
carefully paced introduction to three-dimensional processes 
that may be difficult for students to grasp. In addition, a num-
ber of the new and revised figures help students explore spatial 
relationships in anatomical contexts, such as the interplay of 
lymphatic and cardiovascular circulation (Figure 42.15) and 
the relationship of the limbic system to overall brain structure 
(Figure 49.14). A new Problem-Solving Exercise in Chapter 45  
taps into student interest in medical mysteries through a case 
study that explores the science behind laboratory testing 
and diagnosis. Content updates help students appreciate the 
continued evolution of our understanding of even familiar 
phenomena, such as the sensation of thirst (Concept 44.4) 
and the locomotion of kangaroos and jellyfish (Concept 50.6). 
Furthermore, new text and figures introduce students to 
cutting-edge technology relating to such topics as RNA-based 
antiviral defence in invertebrates (Figure 43.4) and rapid, com-
prehensive characterisation of viral exposure (Figure 43.24), as 
well as recent discoveries regarding brown fat in adult humans 
(Figure 40.16), the microbiome (Figure 41.17), partheno-
genesis (Concept 46.1), and magnetoreception (Concept 50.1). 
In Concept 46.2, we have expanded and clarified differences 
in the reproductive systems of placental and marsupial mam-
mals. The groups have evolved in response to Australia’s drying 
climate in the last tens of millions of years.
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 Figure 41.17 Variation in human gut microbiome at 
different life stages.
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 Figure 55.8 Climate change, 
wildfires, and insect outbreaks.
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NEW! Ready-to-Go Teaching Modules help instructors efficiently make 
use of the best teaching tools before, during, and after class.

The Ready-to-Go Teaching 
Modules incorporate 
the best that the text, 
MasteringBiology, and 
Learning Catalytics have to 
offer, along with new ideas for 
in-class activities. The modules 
can be accessed through the 
Instructor Resources area of 
MasteringBiology.

Instructors can easily incorporate active learning 
into their courses using suggested activity ideas and 
questions. Videos demonstrate how the activities can 
be used in class.

Learning CatalyticsTM  
allows students to use  
their smartphone, tablet, 
or laptop to respond to 
questions in class. Visit 
learningcatalytics.com

Ready-to-Go Teaching Modules for Instructors
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Each chapter is organised around a framework of three to seven Key Concepts that 
focus on the big picture and provide a context for supporting details.

See the Big Picture

Every chapter opens  
with a visually 
dynamic photo 
accompanied by 
an intriguing 
question that 
invites students  
into the chapter.  

The List of Key 
Concepts  
introduces the  
big ideas covered  
in the chapter.

  585

         Figure    27. 1         Why is this lake’s water pink?    

     KEY CONCEPTS   
        27. 1    Structural and functional 

adaptations contribute to 
prokaryotic success    

      27. 2    Rapid reproduction, mutation, 
and genetic recombination 
promote genetic diversity in 
prokaryotes    

      27. 3    Diverse nutritional and metabolic 
adaptations have evolved in 
prokaryotes    

      27. 4    Prokaryotes have radiated into 
a diverse set of lineages    

      27. 5    Prokaryotes play crucial roles 
in the biosphere    

      27. 6    Prokaryotes have both beneficial 
and harmful impacts on humans       

   Masters of Adaptation  
 After heavy summer rains, Australia’s hyper-saline lakes appear pink (Figure 27.1). 
If you poured a cup of water from this lake onto your skin, you would receive third- 
degree burns. You would burn because salt concentrations in hyper-saline lakes 
can reach 37% (about 10 times greater than seawater). Lakes Eyre, Torrens, and 
Gairdner represent some of Australia’s largest hyper-saline lakes, covering more than 
25,000 km2. When the water evaporates into the tinder-dry air, little remains except 
salt pans. Burning waters, or frying salt pans, provide some of the harshest environ-
ments for life. Yet, in the pinkish waters, life abounds.  

 The pink colour of Hutt Lagoon in Western Australia (Figure 27.1) comes from 
trillions of prokaryotes in the domains Archaea and Bacteria, including archaea in 
the genus  Halobacterium . These archaea have red membrane pigments (carotenoids), 
some of which capture light energy that is used to drive ATP synthesis.  Halobacterium  
species are among the most salt-tolerant organisms on Earth; they thrive in salini-
ties that dehydrate and kill other cells. A  Halobacterium  cell compensates for water 
lost through osmosis by pumping potassium ions (K + ) into the cell until the ionic 
concentration inside the cell matches the concentration outside. 

  Like  Halobacterium , many other prokaryotes can tolerate extreme conditions. 
Examples include  Deinococcus radiodurans , which can survive 3 million rads of radia-
tion (3,000 times the dose fatal to humans), and  Picrophilus oshimae , which can 
grow at a pH of 0.03 (acidic enough to dissolve metal). Other prokaryotes live in 
environments that are too cold or too hot for most other organisms, and some have 
even been found living in rocks 3.2 km below Earth’s surface.   

 Bacteria and Archaea          27  

     Archaea in 
 the genus 

Halobacterium.   

  585
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After reading a Key Concept 
section, students can check 
their understanding using  
the Concept Check 
Questions.

Questions throughout 
the chapter encourage 
students to read the 
text actively.

What If? Questions 
ask students to apply 
what they’ve learned. 

Make Connections 
Questions ask 
students to relate 
content in the chapter 
to material presented 
earlier in the course.   

476 Unit FoUr  Mechanisms of Evolution

 Next, we’ll survey the wide range of observations that sup-
port a Darwinian view of evolution by natural selection. 

 An organism’s heritable traits can influence not only its 
own performance, but also how well its offspring cope with 
environmental challenges. For example, an organism might 
have a trait that gives its offspring an advantage in escaping 
predators, obtaining food, or tolerating physical conditions. 
When such advantages increase the number of offspring 
that survive and reproduce, the traits that are favoured will 
probably appear at a greater frequency in the next generation. 
Thus, over time, natural selection resulting from factors 
such as predators, lack of food, or adverse physical condi-
tions can lead to an increase in the proportion of favourable 
traits in a population. 

 How rapidly do such changes occur? Darwin reasoned that 
if artificial selection can bring about dramatic change in a 
relatively short period of time, then natural selection should 
be capable of substantial modification of species over many 
hundreds of generations. Even if the advantages of some 
heritable traits over others are slight, the advantageous varia-
tions will gradually accumulate in the population, and less 
favourable variations will diminish. Over time, this process 
will increase the frequency of individuals with favourable 
adaptations, hence increasing the degree to which organisms 
are well suited for life in their environment.   

   Key Features of Natural Selection  
 Let’s now recap the main ideas of natural selection: 

    Natural selection is a process in which individuals 
that have certain heritable traits survive and reproduce 
at a higher rate than do other individuals because of 
those traits.  

   Over time, natural selection can increase the frequency 
of adaptations that are favourable in a given environ-
ment  (   Figure    22. 12  ) .   

   If an environment changes, or if individuals move to a 
new environment, natural selection may result in adap-
tation to these new conditions, sometimes giving rise to 
new species.   

 One subtle but important point is that although natural 
selection occurs through interactions between individual 
organisms and their environment,  individuals do not evolve . 
Rather, it is the population that evolves over time. 

 A second key point is that natural selection can amplify 
or diminish only those heritable traits that differ among the 
individuals in a population. Thus, even if a trait is heritable, if 
all the individuals in a population are genetically identical for 
that trait, evolution by natural selection cannot occur. 

 Third, remember that environmental factors vary from 
place to place and over time. A trait that is favourable in 
one place or time may be useless—or even detrimental—in 
other places or times. Natural selection is always operating, 
but which traits are favoured depends on the context in 
which a species lives and mates. 

         Figure    22. 12     Camouflage as an example of evolutionary 
adaptation.          Related species of the insects called mantises have diverse 
shapes and colours that evolved in different environments, as seen in 
this South African flower-eyed mantis ( Pseudocreobotra wahlbergii ; top) 
and Malaysian orchid mantis ( Hymenopus coronatus ; bottom).  

   VIsual skIlls         Use evidence from these two images to explain how 
these mantises demonstrate the three key observations about life introduced 
at the beginning of this chapter: the unity and diversity of life and the match 
between organisms and their environments.       

    CONCEPt ChECk    22. 2   

1.     How does the concept of descent with modification 
explain both the unity and diversity of life?   

2.     What IF?   if you discovered a fossil of an extinct reptile 
that lived high in new Zealand’s Southern Alps, would you 
predict that it would more closely resemble present-day 
reptiles from lowland new Zealand forests or present-day 
reptiles that live high in European mountains? Explain.   

3.     MakE CONNECtIONs   review the relationship between 
genotype and phenotype  (see   Figures   14.5   and     14.6  ) . 
Suppose that in a particular pea population, flowers with 
the white phenotype are favoured by natural selection. 
Predict what would happen over time to the frequency 
of the  p  allele in the population, and explain your 
reasoning.    

   For suggested answers, see   Appendix   A  .      
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The Summary of Key Concepts refocuses 
students on the main points of the chapter.

Summary of Key 
Concepts Questions 
check students’ 
understanding of a key 
idea from each concept.

Evolution, the fundamental 
theme of biology, is emphasised 
throughout. Every chapter has 
a section explicitly relating the 
chapter content to evolution:

Synthesise Your 
Knowledge Questions  
ask students to apply their 
understanding of the 
chapter content to explain 
an intriguing photo.

484 Unit FoUr  Mechanisms of Evolution

 Chapter Review              22  

  What, then, is theoretical about evolution? Keep in mind 
that the scientific meaning of the term  theory  is very differ-
ent from its meaning in everyday use. The colloquial use 
of the word  theory  comes close to what scientists mean by 
a hypothesis. In science, a theory is more comprehensive 
than a hypothesis. A theory, such as the theory of evolution 
by natural selection, accounts for many observations and 
explains and integrates a great variety of phenomena. Such a 
unifying theory does not become widely accepted unless its 
predictions stand up to thorough and continual testing by 
experiment and additional observation  (see Concept 1.3) .  As 
the rest of this unit demonstrates, this     has certainly been the 
case with the theory of evolution by natural selection. 

 The scepticism of scientists as they continue to test theories 
prevents these ideas from becoming dogma. For example, 
although Darwin thought that evolution was a very slow pro-
cess, we now know that this isn’t always true. Populations can 
evolve rapidly, and new species can form in relatively short 
periods of time: a few thousand years or less. Furthermore, 
evolutionary biologists now recognise that natural selection 
is not the only mechanism responsible for evolution. Indeed, 
the study of evolution today is livelier than ever as scientists 

    suMMaRY OF kEY CONCEPts   

    CONCEPt    22. 1 

 the Darwinian revolution challenged traditional 
views of a young Earth inhabited by unchanging 
species  (pp.  469 – 471 )    

    Darwin proposed that life’s diversity arose from ancestral 
species through natural selection, a departure from prevailing 
views.  

   Cuvier studied  fossils  but denied that evolution occurs; he pro-
posed that sudden catastrophic events in the past caused species 
to disappear from an area.  

   Hutton and Lyell thought that geological change could result 
from gradual mechanisms that operated in the past in the same 
manner as they do today.  

   Lamarck hypothesised that species evolve, but the underlying 
mechanisms he proposed are not supported by evidence.   

      ??   Why was the age of Earth important for Darwin’s ideas about evolution?      

    CONCEPt    22. 2 
 Descent with modification by natural selection 
explains the adaptations of organisms and the 
unity and diversity of life  (pp.  471 – 476 )    

    Darwin’s experiences during the voyage of the  Beagle  gave rise to 
his idea that new species originate from ancestral forms through 
the accumulation of  adaptations . He refined his theory for 
many years and finally published it in 1859 after learning that 
Wallace had come to the same idea.  

   In  The Origin of Species , Darwin proposed that over long periods of 
time, descent with modification produced the rich diversity 
of life through the mechanism of  natural selection .     

 

Individuals in a population 
vary in their heritable 

characteristics.

Organisms produce more 
offspring than the 

environment can support.

Individuals that are well suited 
to their environment tend to leave more 

offspring than other individuals.

Over time, favourable traits 
accumulate in the population.

Inferences

and

Observations

  

      ??   Describe how overreproduction and heritable variation relate to 
evolution by natural selection.      

    CONCEPt    22. 3 
 Evolution is supported by an overwhelming 
amount of scientific evidence  (pp.  477 – 484 )    

    Researchers have directly observed natural selection leading 
to adaptive evolution in many studies, including research on 
soapberry bug populations and on MRSA.  

use a wide range of experimental approaches and genetic 
analyses to test predictions based on natural selection and 
other evolutionary mechanisms. 

 Although Darwin’s theory attributes life’s diversity to 
natural processes, the diverse products of evolution are nev-
ertheless elegant and inspiring. As Darwin wrote in the final 
sentence of  The Origin of Species , “There is grandeur in this 
view of life … [in which] endless forms most beautiful and 
most wonderful have been, and are being, evolved.” 

    CONCEPt ChECk    22. 3   

1.     Explain how the following statement is inaccurate: 
“Antibiotics have created drug resistance in MrSA.”   

2.    How does evolution account for (a) the similar mammalian 
forelimbs with different functions shown in   Figure    22. 15   
and (b) the similar forms of the two distantly related 
mammals shown in   Figure    22. 18  ?   

3.     What IF?   Fossils show that dinosaurs originated 
200–250 million years ago. Would you expect the geo-
graphic distribution of early dinosaur fossils to be broad 
(on many continents) or narrow (on one or a few conti-
nents only)? Explain.    

   For suggested answers, see   Appendix   A  .       

M22_URRY3715_11_SE_C22.indd   484 01/06/17   1:51 PM

344 Unit three  Genetics

striking results, as shown in      Figure    17. 7   . Bacteria can be 
programmed by the insertion of human genes to synthesise 
certain human proteins for medical use, such as insulin. Such 
applications have produced many exciting developments in 
the area of biotechnology  (see Concept 20.4) . 

  Despite a small number of exceptions, the evolutionary 
significance of the code’s near universality is clear. A lan-
guage shared by all living things must have been operating 
very early in the history of life—early enough to be present in 
the common ancestor of all present-day organisms. A shared 
genetic vocabulary is a reminder of the kinship of all life. 

    ConCEPt CHECK      17. 1   

1.      MAKE ConnECtionS   in a research article about 
alkaptonuria published in 1902, Garrod suggested that 
humans inherit two “characters” (alleles) for a particular 
enzyme and that both parents must contribute a faulty 
version for the offspring to have alkaptonuria. today, 
would this disorder be called dominant or recessive? 
 (See concept 14.4.)    

2.    What polypeptide product would you expect from a 
poly-G mrna that is 30 nucleotides long?   

3.     DRAW it   the template strand of a gene contains the 
sequence 3’-ttcaGtcGt-5’. imagine that the nontem-
plate sequence was transcribed instead of the template 
sequence. Draw the mrna sequence and translate it 
using Figure 17.6. (Be sure to pay attention to the 5’ and 
3’ ends.) predict how well the protein synthesised from 
the nontemplate strand would function, if at all.    

   For suggested answers, see   Appendix   A  .        

(a) Tobacco plant expressing a 
firefly gene.  The yellow glow 
is produced by a chemical 
reaction catalysed by the 
protein product of the firefly 
gene.

(b) Pig expressing a jellyfish 
gene.  Researchers injected a 
jellyfish gene for a fluorescent 
protein into fertilised pig eggs. 
One developed into this 
fluorescent pig.

      Figure    17. 7       Evidence for evolution: expression of genes 
from different species.        Because diverse forms of life share a 
common genetic code due to their shared ancestry, one species can be 
programmed to produce proteins characteristic of a second species by 
introducing DNA from the second species into the first.   

    ConCEPt      17. 2 
 Transcription is the DNA-directed 
synthesis of RNA:  a closer look    
 Now that we have considered the linguistic logic and evo-
lutionary significance of the genetic code, we are ready to 
reexamine transcription, the first stage of gene expression, 
in greater detail. 

   Molecular Components of Transcription  
 Messenger RNA, the carrier of information from DNA to 
the cell’s protein-synthesising machinery, is transcribed 
from the template strand of a gene. An enzyme called an 
 RNA polymerase  pries the two strands of DNA apart and 
joins together RNA nucleotides complementary to the DNA 
template strand, thus elongating the RNA polynucleotide 
 (    Figure    17. 8  ) . Like the DNA polymerases that function in 
DNA replication, RNA polymerases can assemble a poly-
nucleotide only in its 5¿  S 3¿ direction, adding onto its 3¿ 
end. Unlike DNA polymerases, however, RNA polymerases 
are able to start a chain from scratch; they don’t need to add 
the first nucleotide onto a pre-existing primer. 

  Specific sequences of nucleotides along the DNA mark 
where transcription of a gene begins and ends. The DNA 
sequence where RNA polymerase attaches and initiates 
transcription is known as the  promoter ; in bacteria, the 
sequence that signals the end of transcription is called the 
 terminator . (The termination mechanism is different in 
eukaryotes; we’ll describe it later.) Molecular biologists refer 
to the direction of transcription as “downstream” and the 
other direction as “upstream.” These terms are also used to 
describe the positions of nucleotide sequences within the 
DNA or RNA. Thus, the promoter sequence in DNA is said to 
be upstream from the terminator. The stretch of DNA down-
stream from the promoter that is transcribed into an RNA 
molecule is called a  transcription unit . 

 Bacteria have a single type of RNA polymerase that synthe-
sises not only mRNA but also other types of RNA that func-
tion in protein synthesis, such as ribosomal RNA. In contrast, 
eukaryotes have at least three types of RNA polymerase in 
their nuclei; the one used for pre-mRNA synthesis is called 
RNA polymerase II. The other RNA polymerases transcribe 
RNA molecules that are not translated into protein. In the 
discussion that follows, we start with the features of mRNA 
synthesis common to both bacteria and eukaryotes and then 
describe some key differences.  

   Synthesis of an RNA Transcript  
 The three stages of transcription, as shown in   Figure    17. 8   and 
described next, are initiation, elongation, and termination of 
the RNA chain. Study   Figure    17. 8   to familiarise yourself with 
the stages and the terms used to describe them. 
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5.    DNA sequences in many human genes are very similar to the 
sequences of corresponding genes in chimpanzees. The most 
likely explanation for this result is that  
(A)    humans and chimpanzees share a relatively recent com-

mon ancestor.  
(B)   humans evolved from chimpanzees.  
(C)   chimpanzees evolved from humans.  
(D)   convergent evolution led to the DNA similarities.      

   level 3: synthesis/Evaluation  

6.      EVOlutION CONNECtION  Explain why anatomical and 
molecular features often fit a similar nested pattern. In addition, 
describe a process that can cause this not to be the case.   

7.     sCIENtIFIC INQuIRY • DRaW It  Mosquitoes resistant to the 
pesticide DDT first appeared in India in 1959, but now are found 
throughout the world. (a) Graph the data in the table below. 
(b) Examine the graph, then hypothesise why the percentage 
of mosquitoes resistant to DDT rose rapidly. (c) Suggest an 
explanation for the global spread of DDT resistance. 

Month 0 8 12

Mosquitoes Resistant* to DDT 4% 45% 77%

  *Mosquitoes were considered resistant if they were not killed within 1 hour of receiving 
a dose of 4% DDT.  

   Data from  C. F. Curtis et al., Selection for and against insecticide resistance and 
possible methods of inhibiting the evolution of resistance in mosquitoes,  Ecological 
Entomology  3:273–287 (1978).  

8.     WRItE aBOut a thEME: INtERaCtIONs  Write a short 
essay (about 100–150 words) evaluating whether changes 
to an organism’s physical environment are likely to result 
in evolutionary change. Use an example to support your 
reasoning.     

9.     sYNthEsIsE YOuR kNOWlEDGE  

   
 This honeypot ant (genus  Myrmecocystus ) can store liquid food 
inside its expandable abdomen. Consider other ants you are 
familiar with, and explain how a honeypot ant exemplifies 
three key features of life: adaptation, unity, and diversity.    

    For selected answers, see   Appendix   A  .      

   Organisms share characteristics because of common descent 
( homology ) or because natural selection affects independently 
evolving species in similar environments in similar ways 
( convergent evolution ).  

   Fossils show that past organisms differed from living organisms, 
that many species have become extinct, and that species have 
evolved over long periods of time; fossils also document the 
evolutionary origin of new groups of organisms.  

   Evolutionary theory can explain some biogeographical patterns.   

      ??   Summarise the different lines of evidence supporting the hypothesis 
that cetaceans descended from land mammals and are closely related 
to even-toed ungulates.       

   tEst YOuR uNDERstaNDING  

   level 1: knowledge/Comprehension  

1.     Which of the following is  not  an observation or inference on 
which natural selection is based?  
(A)    There is heritable variation among individuals.  
(B)   Poorly adapted individuals never produce offspring.  
(C)   Species produce more offspring than the environment can 

support.  
(D)   Only a fraction of an individual’s offspring may survive.    

2.    Which of the following observations helped Darwin shape his 
concept of descent with modification?  
(A)    Species diversity declines further from the equator.  
(B)   Fewer species live on islands than on the nearest 

continents.  
(C)   Birds live on islands located further from the mainland 

than the birds’ maximum nonstop flight distance.  
(D)   Australian temperate plants are more similar to 

Australian tropical plants than to the temperate 
plants of Europe.      

   level 2: application/analysis  

3.     Within six months of effectively using methicillin to treat 
 S. aureus  infections in a community, all new  S. aureus  infections 
were caused by MRSA. How can this best be explained?  
(A)    A patient must have become infected with MRSA from 

another community.  
(B)   In response to the drug,  S. aureus  began making drug- 

resistant versions of the protein targeted by the drug.  
(C)   Some drug-resistant bacteria were present at the start 

of treatment, and natural selection increased their 
frequency.  

(D)    S. aureus  evolved to resist vaccines.    

4.    The upper forelimbs of humans and bats have fairly similar 
skeletal structures, whereas the corresponding bones in 
whales have very different shapes and proportions. However, 
genetic data suggest that all three kinds of organisms diverged 
from a common ancestor at about the same time. Which of 
the following is the most likely explanation for these data?  
(A)    Forelimb evolution was adaptive in people and bats, but 

not in whales.  
(B)   Natural selection in an aquatic environment resulted in 

significant changes to whale forelimb anatomy.  
(C)   Genes mutate faster in whales than in humans or bats.  
(D)   Whales are not properly classified as mammals.    

    For additional practice questions, check out the Dynamic study 
Modules in MasteringBiology. You can use them to study on 
your smartphone, tablet, or computer anytime, anywhere!           
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Summary Figures 
recap key information 
visually.

Evolution Connection 
Questions are included 
in every Chapter Review.
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Build Visual Skills

Visualising Figures include:
Figure 5.16  Visualising  
Proteins, p. 79

Figure 6.32  Visualising 
the Scale of the Molecular 
Machinery in a Cell,  
pp. 122–123

Figure 16.7  Visualising  
DNA, p. 321

Figure 25.8  Visualising  
the Scale of Geological Time,  
pp. 534–535

Figure 26.5  Visualising 
Phylogenetic Relationships,  
shown at left and on p. 568

Figure 35.12  Visualising  
Primary and Secondary  
Growth, p. 789

Figure 47.8  Visualising 
Gastrulation, p. 1078

Figure 55.12  Visualising 
Biogeochemical Cycles, p. 1284

932 Unit seven  Animal Form and Function

Tongue Oral cavity

Large
intestine

Rectum

Anus

Salivary
glands Pharynx

Gallbladder
Stomach

Pancreas

Small
intestine

Oesophagus

Liver

 Figure 41.8 The human digestive system. After food is 
chewed and swallowed, it takes 5–10 seconds for it to pass down the 
oesophagus and into the stomach, where it spends 2–6 hours being 
partially digested. Further digestion and nutrient absorption occur in 
the small intestine over a period of 5–6 hours. Within 12–24 hours, 
any undigested material passes through the large intestine, and faeces 
are expelled through the anus.

Saliva is a complex mixture of materials with a number 
of vital functions. One major component is mucus, a vis-
cous mixture of water, salts, cells, and slippery glycopro-
teins (carbohydrate–protein complexes). Mucus lubricates 
food for easier swallowing, protects the gums against abra-
sion, and facilitates taste and smell. Saliva also contains 
buffers, which help prevent tooth decay by neutralising 
acid, and antimicrobial agents (such as lysozyme; see  
Figure 5.16), which protect against bacteria that enter the 
mouth with food.

Scientists have long been puzzled by the fact that saliva con-
tains a large amount of the enzyme amylase, which breaks 
down starch (a glucose polymer from plants) and glycogen 
(a glucose polymer from animals). Most chemical digestion 
occurs not in the mouth but in the small intestine, where amy-
lase is also present. Why, then, does saliva contain so much 
amylase? A current hypothesis is that amylase in saliva releases 
food particles that are stuck to the teeth, thereby reducing the 
nutrients available to microorganisms living in the mouth.

The tongue also has important roles in food processing. 
Much as a doorman screens and assists people entering a 
fancy hotel, the tongue aids digestive processes by evaluat-
ing ingested material, distinguishing which foods should 
be processed further and then enabling their passage. (See 
Concept 50.4 for a discussion of the sense of taste.) After 
food is deemed acceptable and chewing begins, tongue 
movements manipulate the mixture of saliva and food, help-
ing shape it into a ball called a bolus (Figure 41.9). During 
swallowing, the tongue provides further assistance, pushing 
the bolus to the back of the oral cavity and into the pharynx.

Each bolus of food is received by 
the pharynx, or throat region, which 
leads to two passageways: the oesopha-
gus and the trachea. The oesophagus 
is a muscular tube that connects to 
the stomach; the trachea (windpipe) 
leads to the lungs. Swallowing must 
therefore be carefully choreographed 
to keep food and liquids from enter-
ing the trachea and causing choking, a 
blockage of the trachea. The resulting 
lack of airflow into the lungs can be 
fatal if the material is not dislodged  
by vigorous coughing, a series of  
back slaps, or a forced upward thrust 
of the diaphragm (the Heimlich 
manoeuvre).

Within the oesophagus, food is 
pushed along by peristalsis, alternat-
ing waves of smooth muscle contraction 
and relaxation. Upon reaching the end 
of the oesophagus, the bolus encoun-
ters a sphincter, a ringlike valve of  

Larynx

Trachea

To lungs To stomach

Bolus of 
food

Epiglottis
up

Glottis up
and closed

Oesophageal
sphincter
contracted

Oesophageal
sphincter
relaxed

Oesophagus

Tongue

Pharynx

Glottis
Epiglottis
down

(a) Trachea open (b) Oesophagus open

Visual skills  If you laugh while drinking water, the liquid may be ejected from your nostrils. Use this 
diagram to explain why this happens, taking into account that laughing involves exhaling.

 Figure 41.9 intersection of the human airway and digestive tract. In humans, the 
pharynx connects to the trachea and the oesophagus. (a) At most times, a contracted sphincter seals 
off the oesophagus while the trachea remains open. (b) When a food bolus arrives at the pharynx, 
the swallowing reflex is triggered. Movement of the larynx, the upper part of the airway, tips a flap 
of tissue called the epiglottis down, preventing food from entering the trachea. At the same time, 
the oesophageal sphincter relaxes, allowing the bolus to pass into the oesophagus. The trachea then 
reopens, and peristaltic contractions of the oesophagus move the bolus to the stomach.
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NEW! Visualising Figures teach students how to interpret 
diagrams and models in biology. Embedded questions give students 
practice applying visual skills as they read the figure.

NEW! Visual Skills Questions 
give students practice interpreting 
illustrations and photos in the text.

For more practice, each  
Visualising Figure is  
accompanied by an  
automatically graded 
assignment in 
MasteringBiology with 
feedback for students.

568 Unit five  The Evolutionary History of Biological Diversity

      Figure    26. 5         Visualising Phylogenetic Relationships     

Each position along a branch represents an 
ancestor in the lineage leading to the taxon 
named at the tip.

Sister taxa are groups of organisms that share 
a common ancestor that is not shared by any 
other group. Chimps and humans are an 
example of sister taxa in this tree.

a phylogenetic tree visually represents a hypothesis of how a group of organisms 
are related. this figure explores how the way a tree is drawn conveys information.

Parts of a Tree

Alternative
Forms of Tree
Diagrams

Rotating
Around 
Branch Points

this tree shows how the five groups of organisms at the tips of the branches, called taxa, 
are related. each branch point represents the common ancestor of the evolutionary lineages 
diverging from it.

these diagrams are referred to as “trees” because they use the visual analogy of branches 
to represent evolutionary lineages diverging over time. in this text, trees are usually drawn 
horizontally, as shown above, but the same tree can be drawn vertically or diagonally 
without changing the relationships it conveys.

rotating the branches of a tree around a branch point does not change what they convey about 
evolutionary relationships. as a result, the order in which taxa appear at the branch tips is not 
significant. What matters is the branching pattern, which signifies the order in which the lineages 
have diverged from common ancestors.

This branch point represents 
the common ancestor of all 
the animal groups shown in 
this tree.

Fishes

Frogs

Lizards

Chimps

Humans

FishesFishes Frogs Lizards Chimps Humans Frogs Lizards Chimps Humans

Vertical tree Diagonal tree

Fishes

Frogs

Lizards

Chimps

Humans Fishes

Frogs

Lizards

Chimps

Humans

Note: The order of
the taxa does NOT 
represent a sequence of 
evolution “leading to” 
the last taxon shown 
(in this tree, humans).

Rotating the branches in 
the tree at left around the 
three blue branch points 
yields the tree on the right.

Each horizontal branch represents an evolutionary lineage. 
The length of the branch is arbitrary unless the diagram 
specifies that branch lengths represent information such as 
time or amount of genetic change (see Figure 26.13).

   11       According to this tree, which 
group or groups of organisms are 
most closely related to frogs?    

   22   Label the part of the diagram that 
represents the most recent common 
ancestor of frogs and humans.    

   33   How many sister taxa are shown 
in these two trees? Identify them.    

  44    Redraw the horizontal tree in   Figure    26. 2   as 
a vertical tree and a diagonal tree.    

  55    Redraw the tree on the 
right, rotating around 
the green branch point. 
Identify the two closest 
relatives of humans as 
shown in each of the three 
trees. Explain your answer.        

   Instructors: additional questions related 
to this visualising figure can be assigned 
in MasteringBiology. 
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NEW! Figure Walkthroughs guide students through key figures with narrated 
explanations, figure markups, and questions that reinforce important points.

EXPANDED! Draw It exercises give students 
practice creating visuals. Students are asked 
to put pencil to paper and draw a structure, 
annotate a figure, or graph experimental data.

A note in the print book lets 
students and instructors know when 
a Figure Walkthrough is available in 
the Study Area.

Questions embedded in each Figure Walkthrough encourage 
students to be active participants in their learning. The Figure 
Walkthroughs can also be assigned in MasteringBiology with 
higher-level questions.
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Eleven Make Connections Figures pull together content from different 
chapters, providing a visual representation of “big picture” relationships.

Make Connections Visually

Make Connections  
Figures include:
Figure 5.26  Contributions of 
Genomics and Proteomics to  
Biology, p. 88

Figure 10.23  The Working Cell,  
pp. 210–211

Figure 18.27  Genomics, Cell 
Signalling, and Cancer, pp. 392–393

Figure 23.19  The Sickle-Cell Allele,  
shown at right and on pp. 504–505

Figure 33.9  Maximising Surface 
Area, p. 715

NEW!  Figure 37.14  Mutualism 
Across Kingdoms and Domains,  
p. 839

Figure 39.27  Levels of Plant Defences 
Against Herbivores, pp. 894–895

Figure 40.24  Life Challenges and 
Solutions in Plants and Animals,  
pp. 920–921

Figure 44.18  Ion Movement  
and Gradients, p. 1019

Figure 55.17  The Working 
Ecosystem, pp. 1290–1291

NEW!  Figure 56.31  Climate Change 
Has Effects at All Levels of Biological 
Organisation, pp. 1316–1317

Effects on Individual Organisms

Evolution in Populations

Infected mosquitoes 
spread malaria when they 
bite people. (See Figure 
28.16.)

Distribution of malaria
caused by Plasmodium falciparum
(a parasitic unicellular eukaryote) 

Frequencies of
the sickle-cell allele

>15.0%

     

3.0

6.0

9.0

12.0

6.0%

9.0%

12.0%

15.0%

–

–

–

–

Key

• The formation of sickled red blood cells causes homozygotes
   with two copies of the sickle-cell allele to have sickle-cell disease. 
• Some sickling also occurs in heterozygotes, but not  enough to
   cause the disease; they have sickle-cell trait.

The sickled blood cells of a 
homozygote block small blood 
vessels, causing great pain and 
damage to organs such as the 
heart, kidney, and brain.

Normal red blood cells 
are flexible and are able 
to flow freely through 
small blood vessels.

Homozygotes with two sickle-cell alleles are strongly 
selected against because of mortality caused by 
sickle-cell disease. In contrast, heterozygotes 
experience few harmful effects from sickling yet are 
more likely to survive malaria than are homozygotes.
In regions where malaria is common, the net effect 
of these opposing selective forces is heterozygote 
advantage. This has caused evolutionary change in 
populations—the products of which are the areas of 
relatively high frequencies of the sickle-cell allele 
shown in the map below.

• 

• 

(See Figure 14.17.)

Events at the Molecular Level 

An adenine replaces a thymine in the 
template strand of the sickle-cell allele, 
changing one codon in the mRNA 
produced during transcription. This 
change causes an amino-acid change in 
sickle-cell haemoglobin: A valine replaces 
a glutamic acid at one position.

Consequences for Cells

Sickle-cell allele
on chromosome

Template strand

Wild-type
allele

Sickled red blood cell

Normal red blood cell

Sickle-cell
haemoglobin

Normal haemoglobin
 (does not aggregate into fibres)

Fibre

Low-oxygen
conditions

• The abnormal haemoglobin fibres distort the red blood   
   cell into a sickle shape under low-oxygen conditions,
   such as those found in blood vessels returning to the heart. 

• Due to a point mutation, the sickle-cell allele differs
   from the wild-type allele by a single nucleotide.
• The resulting change in one amino acid leads to hydrophobic 
   interactions between the sickle-cell haemoglobin proteins under     

low-oxygen conditions.
• As a result, the sickle-cell proteins bind to each other in chains 

that together form a fibre.
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This child has sickle-cell disease, a genetic disorder that strikes individuals 
who have two copies of the sickle-cell allele. This allele causes an 
abnormality in the structure and function of haemoglobin, the oxygen-
carrying protein in red blood cells. Although sickle-cell disease is lethal if not 
treated, in some regions the sickle-cell allele can reach frequencies as high as 
15–20%. How can such a harmful allele be so common?

(See Figure 17.26.)

(See Figure 5.19.)

504 UNIT FOUR  Mechanisms of Evolution

 The Sickle-Cell Allele   

      MAKE CONNECTIONS    Figure    23. 19  
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Make 
Connections 
Questions in 
every chapter 
ask students to 
relate content 
in the chapter 
to material 
presented 
earlier in the 
course.

Effects on Individual Organisms

Evolution in Populations

Infected mosquitoes 
spread malaria when they 
bite people. (See Figure 
28.16.)

Distribution of malaria
caused by Plasmodium falciparum
(a parasitic unicellular eukaryote) 

Frequencies of
the sickle-cell allele

>15.0%

     

3.0

6.0

9.0

12.0

6.0%

9.0%
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15.0%
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Key

• The formation of sickled red blood cells causes homozygotes
   with two copies of the sickle-cell allele to have sickle-cell disease. 
• Some sickling also occurs in heterozygotes, but not  enough to
   cause the disease; they have sickle-cell trait.

The sickled blood cells of a 
homozygote block small blood 
vessels, causing great pain and 
damage to organs such as the 
heart, kidney, and brain.

Normal red blood cells 
are flexible and are able 
to flow freely through 
small blood vessels.

Homozygotes with two sickle-cell alleles are strongly 
selected against because of mortality caused by 
sickle-cell disease. In contrast, heterozygotes 
experience few harmful effects from sickling yet are 
more likely to survive malaria than are homozygotes.
In regions where malaria is common, the net effect 
of these opposing selective forces is heterozygote 
advantage. This has caused evolutionary change in 
populations—the products of which are the areas of 
relatively high frequencies of the sickle-cell allele 
shown in the map below.

• 

• 

(See Figure 14.17.)

Events at the Molecular Level 

An adenine replaces a thymine in the 
template strand of the sickle-cell allele, 
changing one codon in the mRNA 
produced during transcription. This 
change causes an amino-acid change in 
sickle-cell haemoglobin: A valine replaces 
a glutamic acid at one position.

Consequences for Cells

Sickle-cell allele
on chromosome

Template strand

Wild-type
allele

Sickled red blood cell

Normal red blood cell

Sickle-cell
haemoglobin

Normal haemoglobin
 (does not aggregate into fibres)

Fibre

Low-oxygen
conditions

• The abnormal haemoglobin fibres distort the red blood   
   cell into a sickle shape under low-oxygen conditions,
   such as those found in blood vessels returning to the heart. 

• Due to a point mutation, the sickle-cell allele differs
   from the wild-type allele by a single nucleotide.
• The resulting change in one amino acid leads to hydrophobic 
   interactions between the sickle-cell haemoglobin proteins under     

low-oxygen conditions.
• As a result, the sickle-cell proteins bind to each other in chains 

that together form a fibre.
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This child has sickle-cell disease, a genetic disorder that strikes individuals 
who have two copies of the sickle-cell allele. This allele causes an 
abnormality in the structure and function of haemoglobin, the oxygen-
carrying protein in red blood cells. Although sickle-cell disease is lethal if not 
treated, in some regions the sickle-cell allele can reach frequencies as high as 
15–20%. How can such a harmful allele be so common?

(See Figure 17.26.)

(See Figure 5.19.)

504 UNIT FOUR  Mechanisms of Evolution

 The Sickle-Cell Allele   

      MAKE CONNECTIONS    Figure    23. 19  
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Effects on Individual Organisms

Evolution in Populations

Infected mosquitoes 
spread malaria when they 
bite people. (See Figure 
28.16.)

Distribution of malaria
caused by Plasmodium falciparum
(a parasitic unicellular eukaryote) 

Frequencies of
the sickle-cell allele

>15.0%
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Key

• The formation of sickled red blood cells causes homozygotes
   with two copies of the sickle-cell allele to have sickle-cell disease. 
• Some sickling also occurs in heterozygotes, but not  enough to
   cause the disease; they have sickle-cell trait.

The sickled blood cells of a 
homozygote block small blood 
vessels, causing great pain and 
damage to organs such as the 
heart, kidney, and brain.

Normal red blood cells 
are flexible and are able 
to flow freely through 
small blood vessels.

Homozygotes with two sickle-cell alleles are strongly 
selected against because of mortality caused by 
sickle-cell disease. In contrast, heterozygotes 
experience few harmful effects from sickling yet are 
more likely to survive malaria than are homozygotes.
In regions where malaria is common, the net effect 
of these opposing selective forces is heterozygote 
advantage. This has caused evolutionary change in 
populations—the products of which are the areas of 
relatively high frequencies of the sickle-cell allele 
shown in the map below.

• 

• 

(See Figure 14.17.)

Events at the Molecular Level 

An adenine replaces a thymine in the 
template strand of the sickle-cell allele, 
changing one codon in the mRNA 
produced during transcription. This 
change causes an amino-acid change in 
sickle-cell haemoglobin: A valine replaces 
a glutamic acid at one position.

Consequences for Cells

Sickle-cell allele
on chromosome

Template strand

Wild-type
allele

Sickled red blood cell

Normal red blood cell

Sickle-cell
haemoglobin

Normal haemoglobin
 (does not aggregate into fibres)

Fibre

Low-oxygen
conditions

• The abnormal haemoglobin fibres distort the red blood   
   cell into a sickle shape under low-oxygen conditions,
   such as those found in blood vessels returning to the heart. 

• Due to a point mutation, the sickle-cell allele differs
   from the wild-type allele by a single nucleotide.
• The resulting change in one amino acid leads to hydrophobic 
   interactions between the sickle-cell haemoglobin proteins under     

low-oxygen conditions.
• As a result, the sickle-cell proteins bind to each other in chains 

that together form a fibre.
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This child has sickle-cell disease, a genetic disorder that strikes individuals 
who have two copies of the sickle-cell allele. This allele causes an 
abnormality in the structure and function of haemoglobin, the oxygen-
carrying protein in red blood cells. Although sickle-cell disease is lethal if not 
treated, in some regions the sickle-cell allele can reach frequencies as high as 
15–20%. How can such a harmful allele be so common?

(See Figure 17.26.)

(See Figure 5.19.)

 CHAPTER 23  The Evolution of Populations 505

           MAKE CONNECTIONS    In a region free of malaria, would individuals who are 
heterozygous for the sickle-cell allele be selected for or selected against? Explain.      
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xviii	

Scientific Skills Exercises use real data to build key skills needed for biology, 
including data analysis, graphing, experimental design and maths skills.

Practise Scientific Skills

Each Scientific Skills Exercise  
is based on an experiment 
related to the chapter 
content.

Questions build in 
difficulty, walking students 
through new skills step by 
step and providing 
opportunities for higher- 
level critical thinking.

Most Scientific Skills Exercises 
use data from published 
research, which is cited in  
the exercise.

 chapter 7  Membrane Structure and Function 137

   SCIENTIFIC SKILLS EXERCISE 
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an experiment that examined glucose uptake over time in 
red blood cells from guinea pigs of different ages. You will 
determine if the cells’ rate of glucose uptake depended on the 
age of the guinea pigs.  

How the Experiment Was Done      researchers incubated guinea 
pig red blood cells in a 300 m M  (millimolar) radioactive glucose M  (millimolar) radioactive glucose M
solution at ph 7.4 at 25°c. every 10 or 15 minutes, they removed 
a sample of cells and measured the concentration of radioactive 
glucose inside those cells. the cells came from either a 15-day-old 
or a 1-month-old guinea pig.  

Data from the Experiment      when you have multiple sets of 
data, it can be useful to plot them on the same graph for compari-
son. in the graph here, each set of dots (of the same colour) forms 
a  scatter plota  scatter plota   , in which every data point represents two numerical scatter plot , in which every data point represents two numerical scatter plot
values, one for each variable. For each data set, a curve that best fits 
the points has been drawn to make it easier to see the trends. (For 
additional information about graphs, see the Scientific Skills review 
in   appendix   F  .)  

    INTERPRET THE DATA   

1.     First make sure you understand the parts of the graph. (a) which 
variable is the independent variable—the variable controlled by 
the researchers? (b) which variable is the dependent variable—
the variable that depended on the treatment and was measured 
by the researchers? (c) what do the red dots represent? (d) the 
blue dots?   

2.    From the data points on the graph, construct a table of the data. 
put “incubation time (min)” in the left column of the table.   

3.    what does the graph show? compare and contrast glucose 
uptake in red blood cells from 15-day-old and 1-month-old 
guinea pigs.   

4.    Develop a hypothesis to explain the difference between glucose 
uptake in red blood cells from 15-day-old and 1-month-old guinea 
pigs. (think about how glucose gets into cells.)   

5.    Design an experiment to test your hypothesis.       
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     Data from  T. Kondo and E. Beutler, Developmental changes in glucose trans-
port of guinea pig erythrocytes,  Journal of Clinical Investigation  65:1–4 (1980).   

   Instructors: a version of this Scientific Skills exercise 
can be assigned in MasteringBiology. 

leave the cell. (See the potassium ion channel at the begin-
ning of this chapter.) This restores the cell’s ability to fire 
again. Other gated channels open or close when a specific 
substance other than the one to be transported binds to 
the channel. These gated channels are also important in 
the functioning of the nervous system , as we explain in 
Concepts 48.2 and 48.3 . 

 Carrier proteins, such as the glucose transporter mentioned 
earlier, seem to undergo a subtle change in shape that somehow 
translocates the solute-binding site across the membrane 
(  Figure    7. 15b  ). Such a change in shape may be triggered 
by the binding and release of the transported molecule. 
Like ion channels, carrier proteins involved in facilitated 
diffusion result in the net movement of a substance down 
its concentration gradient. No energy input is thus required: 
This is passive transport. The  Scientific Skills Exercise  gives 

molecules or small ions to diffuse very quickly from one 
side of the membrane to the other. Aquaporins, the water 
channel proteins, facilitate the massive levels of diffusion of 
water (osmosis) that occur in plant cells and in animal cells 
such as red blood cells (see   Figure    7. 13  ). Certain kidney cells 
also have a high number of aquaporins, allowing them to 
reclaim water from urine before it is excreted. If the kidneys 
did not perform this function, you would excrete about 
180 L of urine per day—and have to drink an equal volume 
of water!  

 Channel proteins that transport ions are called  ion 
channels . Many ion channels function as  gated channels , 
which open or close in response to a stimulus. For some 
gated channels, the stimulus is electrical. In a nerve cell, 
for example, an ion channel opens in response to an 
 electrical stimulus, allowing a stream of potassium ions to 
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Scientific Skills Exercises are available as 
interactive assignments in MasteringBiology 
that are automatically graded.

	 1 	 Interpreting a Pair of Bar Graphs, p. 23

	 2 	 Calibrating a Standard Radioactive Isotope Decay Curve  
and Interpreting Data, p. 33

	 3 	 Interpreting a Scatter Plot with a Regression Line, p. 54

	 4	 Working with Moles and Molar Ratios, p. 58

	 5	 Analysing Polypeptide Sequence Data, p. 89

	 6	 Using a Scale Bar to Calculate Volume and Surface Area  
of a Cell, p. 99

	 7	 Interpreting a Scatter Plot with Two Sets of Data,  
shown above and on p. 137

	 8	 Making a Line Graph and Calculating a Slope, p. 159

	 9	 Making a Bar Graph and Evaluating a Hypothesis, p. 181

	10	 Making Scatter Plots with Regression Lines, p. 207

	11	 Using Experiments to Test a Model*

	12	 Interpreting Histograms, p. 252

	13	 Making a Line Graph and Converting Between Units  
of Data, p. 266

	14	 Making a Histogram and Analysing a Distribution Pattern, p. 285

	15	 Using the Chi-Square (x2) Test, p. 306

	16	 Working with Data in a Table, p. 320

	17	 Interpreting a Sequence Logo, p. 353

18	 Analysing DNA Deletion Experiments, p. 375

	19	 Analysing a DNA Sequence-Based Phylogenetic Tree  
to Understand Viral Evolution, p. 411

20	 Analysing Quantitative and Spatial Gene Expression Data*

21	 Reading an Amino Acid Sequence Identity Table, p. 457

22	 Making and Testing Predictions, p. 483

23	 Using the Hardy-Weinberg Equation to Interpret Data  
and Make Predictions, p. 494

24	 Identifying Independent and Dependent Variables, Making  
a Scatter Plot, and Interpreting Data, p. 515

25	 Estimating Quantitative Data from a Graph and Developing 
Hypotheses, p. 540

26	 Using Protein Sequence Data to Test an Evolutionary 
Hypothesis, p. 582       

	27	 Calculating and Interpreting Means and Standard Errors, p. 602

SCIENTIFIC SKILLS EXERCISES are available for every chapter:
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NEW! Problem-Solving Exercises guide students in applying scientific skills 
and interpreting real data in the context of solving a real-world problem.

Problem-Solving  
Exercises include:
Ch. 5:  Are you a victim  
of fish fraud? Shown at left  
and on p. 89

Ch. 11:  Can a skin wound 
turn deadly? p. 216

Ch. 17:  Are insulin mutations 
the cause of three infants’ 
neonatal diabetes? p. 361

Ch. 24:  Is hybridisation 
promoting insecticide 
resistance in mosquitoes that 
transmit malaria? p. 520

Ch. 34:  Can declining 
amphibian populations be 
saved by a vaccine? p. 754

Ch. 39:  How will climate 
change impact crop 
productivity? p. 889

Ch. 45:  Is thyroid regulation 
normal in this patient? p. 1036

Ch. 55:  Can an insect 
outbreak threaten a forest’s 
ability to absorb CO2 from 
the atmosphere? p. 1280

* Available only in MasteringBiology. All other Scientific Skills Exercises are in the 
print book, eText, and MasteringBiology.

   SCIENTIFIC SKILLS EXERCISE   

   Instructors: a version of this Scientific 
Skills exercise can be assigned in 
MasteringBiology. 

   PROBLEM-SOLVING EXERCISE   

  Are you a victim 
of fish fraud?       
 When buying salmon, perhaps you 
prefer the more expensive wild-caught 
pacific salmon ( Oncorhynchus  species) over 
farmed atlantic salmon ( Salmo salar ). But 
studies reveal that about 40% of the time, 
you aren’t getting the fish you paid for!    

 In this exercise, you will investigate whether a piece of salmon has been fraudulently labelled.  

   Your Approach      the principle guiding your investigation is that Dna sequences from 
within a species or from closely related species are more similar to each 
other than are sequences from more distantly related species.   

   Your Data      You’ve been sold a piece of salmon labelled as coho salmon ( Oncorhynchus 
kisutch ). to see whether your fish was labelled correctly, you will compare a 
short Dna sequence from your sample to standard sequences from the same 
gene for three salmon species. the sequences are: 

   Your Analysis  1.    Scan along the standard sequences ( O. kisutch, O. keta , and  S. salar ), 
base by base, circling any bases that do not match the sequence from 
your fish sample.  

2.   how many bases differ between (a)  O. kisutch  and your fish sample? 
(b)  O. keta  and the sample? (c)  S. salar  and the sample?  

3.   For each standard, what percentage of its bases are identical to your 
sample?  

4.   Based on these data alone, state a hypothesis for the species identity 
of your sample. What is your reasoning?   

   

µ Standard 
sequences 

   Sample labelled as  O. kisutch  
 (coho salmon) 

5 ’ -CGGCACCGCCCTAAGTCTCT-3 ’  

  Sequence for  O. kisutch  (coho salmon)  5 ’ - AGGCACCGCCCTAAGTCTAC-3 ’  

  Sequence for  O. keta  (chum salmon)  5 ’ - AGGCACCGCCCTGAGCCTAC -3 ’  

  Sequence for  Salmo salar  (atlantic salmon) 5 ’ -CGGCACCGCCCTAAGTCTCT-3 ’    

Species Alignment of Amino Acid Sequences of 𝛃𝛃-globin

human   1 VHLTPEEKSA   VTALWGKVNV   DEVGGEALGR   LLVVYPWTQR   FFESFGDLST

Monkey   1 VHLTPEEKNA   VTTLWGKVNV   DEVGGEALGR   LLLVYPWTQR   FFESFGDLSS

Gibbon   1 VHLTPEEKSA   VTALWGKVNV   DEVGGEALGR   LLVVYPWTQR   FFESFGDLST

human  51 PDAVMGNPKV   KAHGKKVLGA   FSDGLAHLDN   LKGTFATLSE   LHCDKLHVDP

Monkey  51 PDAVMGNPKV   KAHGKKVLGA   FSDGLNHLDN   LKGTFAQLSE   LHCDKLHVDP

Gibbon  51 PDAVMGNPKV   KAHGKKVLGA   FSDGLAHLDN   LKGTFAQLSE   LHCDKLHVDP

human 101 ENFRLLGNVL   VCVLAHHFGK   EFTPPVQAAY   QKVVAGVANA   LAHKYH

Monkey 101 ENFKLLGNVL   VCVLAHHFGK   EFTPQVQAAY   QKVVAGVANA   LAHKYH

Gibbon 101 ENFRLLGNVL   VCVLAHHFGK   EFTPQVQAAY   QKVVAGVANA   LAHKYH

    INTERPRET THE DATA   

1.     Scan the monkey and gibbon sequences, letter by letter, circling any 
amino acids that do not match the human sequence. (a) how many 
amino acids differ between the monkey and the human sequences? 
(b) Between the gibbon and human?   

2.    For each nonhuman species, what percentage of its amino acids 
are identical to the human sequence of β-globin?   

3.    Based on these data alone, state a hypoth-
esis for which of these two species is more 
closely related to humans. What is your 
reasoning?   

4.    What other evidence could you use to 
support your hypothesis?     

   Data from  Human: www.ncbi.nlm.nih.gov/protein/
AAA21113.1; rhesus monkey: www.ncbi
.nlm.nih.gov/protein/122634; gibbon: www.ncbi
.nlm.nih.gov/protein/122616       
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How Such Experiments Are Done      researchers can isolate the 
polypeptide of interest from an organism and then determine the 
amino acid sequence. More frequently, the Dna of the relevant 
gene is sequenced, and the amino acid sequence of the polypeptide 
is deduced from the Dna sequence of its gene. 

    Data from the Experiments     in the data below, the letters give 
the sequence of the 146 amino acids in β-globin from humans, rhesus 

monkeys, and gibbons. Because a complete sequence would not fit 
on one line here, the sequences are broken into three segments. 
the sequences for the three different species are aligned so that you 
can compare them easily. For example, you can see that for all three 
species, the first amino acid is V (valine) and the 146th amino acid is 
h (histidine).   
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NEW! More than 450 carefully chosen and edited videos and animations have 
been integrated into the print book and MasteringBiology at point of use to help 
students learn biology visually.

Bring Biology to Life

Access the complete textbook online!   
The Campbell eText includes powerful inter-
active and customisation functions, such  
as instructor and student note-taking,  
highlighting, bookmarking, search,  
and links to glossary terms.

Media references in the print book direct students to digital resources in the Study Area:
•	 BioFlix Animations
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Succeed with MasteringBiology

Before Class
Dynamic Study Modules provide students with 
multiple sets of questions with extensive feedback so 
that they can test, learn, and retest until they achieve 
mastery of the textbook material.

NEW! Get Ready for This Chapter quizzes help 
students review content they need to understand from 
previous chapters.

Pre-Class Reading Quizzes help students pinpoint 
concepts that they understand and concepts that they 
need to review.

During Class 
NEW! For ideas for in-class activities, see the  
Ready-to-Go Teaching Modules.

After Class 
Hundreds of self-paced tutorials and coaching 
activities provide students with individualised 
coaching with specific hints and feedback on the 
toughest topics in the course.

Optional Adaptive Follow-up Assignments 
are based on each student’s performance on the 
original MasteringBiology assignment and provide 
additional questions and activities tailored  
to each student’s needs.

MasteringBiology improves results by engaging students before, during, 
and after class.

Learning CatalyticsTM allows students 
to use their smartphone, tablet, or laptop 
to respond individually or in groups to 
questions in class. Visit learningcatalytics.
com to learn more.

	 	 xxi
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Instructors can assign self-paced  
MasteringBiology tutorials that 
provide students with individualised 
coaching with specific hints and 
feedback on the toughest topics  
in the course.

Personalised Coaching in MasteringBiology

1.	 If a student gets stuck...
2.	 Specific wrong-answer feedback 

appears in the purple feedback box.

3.	 Hints coach students to the  
correct response.

4.	 Optional Adaptive Follow-Up 
Assignments are based on the original 
homework assignment  
and provide additional coaching  
and practice as needed.

Question sets in the Adaptive 
Follow-Up Assignments 
continuously adapt to each 
student’s needs, making efficient 
use of study time.
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MasteringBiology offers thousands of tutorials, 
activities, and questions that can be assigned as 
homework. A few examples are shown below.

The MasteringBiology Gradebook provides instructors 
with quick results and easy-to-interpret insights into student 
performance. Every assignment is automatically graded. Shades  
of red highlight vulnerable students and challenging assignments.

BioFlix Tutorials use 3D, movie-
quality animations and coaching 
exercises to help students master 
tough topics outside of class. 
Animations are also available in  
the Study Area and can be shown  
in class.

EXPANDED! HHMI BioInteractive Short 
Films, documentary-quality movies from 
the Howard Hughes Medical Institute, 
engage students in topics from the 
discovery of the double helix to evolution, 
with assignable questions.

NEW! Galápagos 
Evolution Video 
Activities, filmed on 
the Galápagos Islands by 
Peter and Rosemary Grant, 
bring to life the dynamic 
evolutionary processes that 
impact Darwin’s finches 
on Daphne Major Island. 
Videos explore important 
concepts and data from the 
Grants’ field research, with 
assignable activities.

Student scores on the optional 
Adaptive Follow-Up Assignments 
are recorded in the gradebook 
and offer additional diagnostic 
information for instructors to monitor 
learning outcomes and more.

	 PERSONALISED COACHING IN MASTERINGBIOLOGY	 xxiii
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Instructor Resources

Instructor’s Resource USB Set for Campbell Biology, 
Eleventh Edition
The Instructor’s Resource USB consists of a set of assets for each 
chapter. Specific features include: 

•	 Editable figures (art and photos) and tables from the text in 
PowerPoint® 

•	 Test Bank questions.

The Instructor Resources area of MasteringBiology 
includes: 

•	 NEW! Ready-to-Go Teaching Modules help instructors efficiently 
make use of the available teaching tools for the toughest 
topics. Before-class assignments, in-class activities, and after-
class assignments are provided for ease of use. Instructors can 
incorporate active learning into their course with the suggested 
activity ideas and clicker questions or Learning Catalytics questions.

•	 Editable figures (art and photos) and tables from the text in 
PowerPoint

•	 Testbank questions.

  All of the art, graphs, and photos from the text  
are provided with customisable labels. More than 1,600 
photos from the text and other sources are included.
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Mimosaceae

Myoporaceae Proteaceae

Myrtaceae
The silver gum
(Eucalyptus crenulata)
is endemic to Victoria. It
grows on gently sloping,
low-lying lands that can
periodically experience
inundation from nearby
rivers and streams. This
species forms a dominant
component of open
woodlands in two
remaining populations.
Censuses suggest that
fewer than 600 individuals
remain in the wild. The
species is classifed as
endangered.

Melaleuca sciotostyla occurs in only one known locality, outside Perth in
Western Australia. At best, this species grows to 1.5 m tall. Aside from
preliminary surveys of populations and the original description of the species, 
little is known about it. We do know that this one population is threatened 
by grazing and by competition from invasive weeds, and is at risk from fire. 
The species remains unprotected in a park or reserve system and is endangered.

Eremophila
scaberula is a
low-growing
shrub. It
survives in
a small
population
north of Perth.
Some describe
its growth
form as like a
barbed wire
entanglement.
The tallest

individuals recorded may reach 70 cm high, although the majority
reach 15 cm. It grows in open scrub on clay soils that periodically
experience inundation. Few individuals remain. We know little about
the biology of the species. The species is endangered and remains
unprotected because it is not represented in the reserve system.

Grevillea beadleana—Beadle’s
grevillea—is a small shrub
growing up to 2.5 m tall. This
species forms the understorey of
forests dominated variously by
Eucalyptus and Acacia species.
The five remaining wild
populations occur in northeastern
New South Wales. The remnant
populations occur on steep-sided
ridges, or atop high plateaus
600–1000 m above sea level.
While protected in national parks,
the populations remain susceptible
to both fire and predation. Like the
Wollemi Pine, this species is
available for sale from a limited
number of commercial nurseries.

Acacia unguicula is
a small erect shrub,
growing to 2 m tall.
It occurs in one
population located in
open scrub country
in central Western
Australia. The
population of this
species halved between
2001 and 2004, leaving

just 43 individuals. Subjected to grazing by goats and threatened by
wildfire, this species is a member of E. O. Wilson’s 100 heartbeats
club (see Chapter 56); gaining entry to this club requires that there are
fewer than 100 individuals left on Earth. The species is critically
endangered. It remains on a pastoral lease, and is outside the
protection of national parks or other protected areas.

Family Genus

Number of Australian
Australian Flora

Species %

Mimosaceae Acacia 950 4.7

Myoporaceae Eremophila 214 1.1

Myrtaceae Eucalyptus 700 3.5
Melaleuca 250 1.3

Proteaceae Grevillea 355 1.8

Total 12.4

Table 30.3 The Angiosperm Genera That Each Comprise More
Than 1% of the Total Number of Species
in the Australian Flora
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Key Concepts
	1.1	 The study of life reveals unifying 

themes 

	1.2	 The Core Theme: Evolution 
accounts for the unity and 
diversity of life 

	1.3	 In studying nature, scientists 
make observations and form  
and test hypotheses 

	1.4	 Science benefits from a 
cooperative approach and 
diverse viewpoints 

Superset

1

Inquiring About Life
In brief periods of fine weather, you might be lucky enough to see a western pygmy 
possum (Cercartetus concinnus) emerge from a tree or rock hollow in Australia’s south-
west. These solitary, nocturnal animals forage for pollen and nectar  in plants like the 
scarlett banksia (Banksia coccinea) (Figure 1.1). Barely 9 cm long, the western pygmy 
possum relies on an energy-rich diet to fuel a metabolism so rapid that failing to eat 
on successive nights may see the animal starve to death. Thus, during periods of cold 
and/or rain, which could prove fatal to the possum, the animal enters an incredibly 
deep sleep, called torpor. A very slow heartbeat, limited oxygen consumption, and 
a body temperature cooled to only a degree or two above the air temperature in its 
hollow allow the animal to conserve energy for up to a week. How has the pygmy 
possum’s ability to enter torpor matched, or adapted, to the local conditions?

An organism’s adaptations to its environment are the result of evolution, the 
process of change over time that has resulted in the astounding array of organisms 
found on Earth. Evolution is the fundamental principle of biology and the core 
theme of this book.

Although biologists know a great deal about life on Earth, many mysteries 
remain. Posing questions about the living world and seeking answers through 
scientific inquiry are the central activities of biology, the scientific study of 
life. Biologists’ questions can be ambitious. They may ask how a single tiny cell 

Evolution,  
the Themes  
of Biology, and  
Scientific Inquiry

 Figure 1.1  A western pygmy possum (Cercartetus concinnus) seeking nectar in a banksia flower.

2

 The characteristic red-tinged fur of the barely 9 cm long western pygmy 
possum distinguishes the animal from its grey-coated eastern cousins.
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While limited to a handful of images, Figure 1.2 reminds 
us that the living world is wondrously varied. How do biolo-
gists make sense of this diversity and complexity? This open-
ing chapter sets up a framework for answering this question. 
The first part of the chapter provides a panoramic view of 
the biological “landscape,” organised around some unifying 
themes. We then focus on biology’s core theme, evolution, 
which accounts for life’s unity and diversity. Next, we look at 
scientific inquiry—how scientists ask and attempt to answer 
questions about the natural world. Finally, we address the 
culture of science and its effects on society.

becomes a tree or a dog, how the human mind works, or 
how the different forms of life in a forest interact. When 
questions occur to you as you observe the natural world, you 
are thinking like a biologist. More than anything else, biol-
ogy is a quest, an ongoing inquiry about the nature of life.

At the most fundamental level, we may ask: What is life?  
Even a child realises that a dog or a plant is alive, while a 
rock or a car is not. Yet the phenomenon we call life defies a 
simple, one-sentence definition. We recognise life by what 
living things do. Figure 1.2 highlights some of the properties 
and processes we associate with life.

▲  Regulation. The regulation of blood 
flow through the blood vessels of this 
bilby’s ears helps maintain a constant 
body temperature by adjusting heat 
exchange with the surrounding air.

▼ Reproduction. 
Organisms (living 
things) reproduce 
their own kind.

▲ Growth and development. 
Inherited information carried by 
genes controls the pattern of 
growth and development of organ- 
isms, such as this oak seedling.

▼ Order. This close-up of a sunflower 
illustrates the highly ordered 
structure that characterises life.

▲  Energy processing. This 
butterfly obtains fuel in 
the form of nectar from 
flowers. The butterfly    
will use chemical energy 
stored in its food to 
power flight and other 
work.

▲  Evolutionary adaptation. The overall 
appearance of this pygmy sea horse 
camouflages the animal in its environment. 
Such adaptations evolve over countless 
generations by the reproductive          
success of those individuals with  
heritable traits that are best suited to 
their environments.

▲ Response to the 
environment.     
The Venus flytrap   
on the left closed    
its trap rapidly in 
response to the 
environmental 
stimulus of a 
grasshopper   
landing on the   
open trap.

 Figure 1.2  Some properties of life. 

Copyright © Pearson Australia (a division of Pearson Australia Group Pty Ltd) 2018—9781488613715—Urry/Campbell Biology 11e



4	 chapter 1   Evolution, the Themes of Biology, and Scientific Inquiry

▶ 9  Organelles

The entire array of organisms inhabiting 
a particular ecosystem is called a 
biological community. The community  
in our forest ecosystem includes many 
kinds of trees and other plants, a 
diversity of animals, various mushrooms 
and other fungi, and enormous numbers 
of diverse microorganisms, which are living forms such 
as bacteria that are too small to see without a microscope. 
Each of these forms of life is called a species.

               ◀ 1  The Biosphere
As soon as we are near enough to Earth to make out its continents and oceans, we begin to see 
signs of life—in the green mosaic of the planet‘s forests, for example. This is our first view of 
the biosphere, which consists of all the environments on Earth that are inhabited by life. The 
biosphere includes most regions of land; most bodies of water, such as oceans, lakes, and rivers; 
and the atmosphere to an altitude of several kilometres.

      ◀ 2  Ecosystems
As we approach Earth’s surface for an imaginary landing in north-
eastern Victoria, we can begin to make out a forest with an abundance 
of eucalypts. Such a eucalypt forest is an example of an ecosystem. 
Grasslands, deserts, and the ocean’s coral reefs are other types of 
ecosystems. An ecosystem consists of all the living things in a particular 
area, along with all the nonliving components of the environment 
with which life interacts, such as soil, water, atmospheric gases, and 
light. All of Earth’s ecosystems combined make up the biosphere.

▶ 4  Populations
A population consists of all the individuals of 
a species living within the bounds of a specified 
area. For example, our north-eastern Victorian 
forest includes a population of eucalypts and 
a population of koalas. We can now refine 
our definition of a community as the set of 
populations that inhabit a particular area.

▲ 5  Organisms
Individual living things are 
called organisms. Each of the trees 
and other plants in the forest is 
an organism, and so is each forest 
animal such as a frog, lizard, 
koala, and insects. The soil teems 
with microorganisms such as 
bacteria.

▶ 3  Communities

▼ 6  Organs and Organ Systems      ◀ 7  Tissues
Our next scale change—to 
see a leaf’s tissues—requires a 
microscope. The leaf on the left has 
been cut on an angle. The honey-
combed tissue in the interior of the 
leaf (left side of photo) is the main 
location of photosynthesis, the 
process that converts light energy 
to the chemical energy of sugar 
and other food. We are viewing the 
sliced leaf from a perspective that 
also enables us to see the jigsaw 
puzzle-like tissue called epidermis, 
the “skin” on the surface of the 
leaf (right side of photo). The pores 
through the epidermis allow the gas 
carbon dioxide (CO2), a raw material 
for sugar production, to reach 
the photosynthetic tissue in the 
interior of the leaf. At this scale, we 
can also see that each tissue has a 
cellular structure. In fact, each kind 
of tissue is a group of similar cells.

▲ 8  Cells
The cell is life’s fundamental unit of structure and 
function. Most organisms, such as amoebas and 
most bacteria, are single cells. Some organisms, 
including plants and animals, are multicellular. 
Instead of a single cell performing all the functions 
of life, a multicellular organism has a division 
of labour among specialised cells. A human 
body consists of trillions of microscopic cells of 
many di�erent kinds, including muscle cells and 
nerve cells, which are organised into the various 
specialised tissues. For example, muscle tissue 
consists of bundles of muscle cells. And note again 
the cells of the tissue within a leaf’s interior. Each 
of the cells you see is about 25 μm (micrometres) 
across. It would take 65 of these cells to reach 
across an “O” on this page. As small as these cells 
are, you can see that each contains numerous 
green structures called chloroplasts, which are 
responsible for photosynthesis.

Chloroplasts are examples of organelles, 
the various functional components that 
make up cells. In this figure, a very powerful 
tool called an electron microscope brings a 
single chloroplast into sharp focus.

Our last scale change vaults us into a 
chloroplast for a view of life at the molecular 
level. A molecule is a chemical structure 
consisting of two or more small chemical 
units called atoms, which are represented 
as balls in this computer graphic of a 
chlorophyll molecule. Chlorophyll is the 
pigment molecule that makes a eucalypt 
leaf green. One of the most important 
molecules on Earth, chlorophyll 
absorbs sunlight during the first 
step of photosynthesis. Within each 
chloroplast, millions of chlorophylls and 
other molecules are organised into the 
equipment that converts light energy to the 
chemical energy of food. 

▶ 10  Molecules

The structural hierarchy of life continues to unfold as we 
explore the architecture of the more complex organisms. 
A eucalypt leaf is an example of an 
organ, a body part consisting of two 
or more tissues (which we’ll see upon 
our next scale change). Stems and 
roots are the other major organs of 
plants. Examples of human organs 
are the brain, heart, and kidneys. The 
organs of humans and other complex 
animals are organised into organ 
systems, each a team of organs that 
cooperate in a specific function. For 
example, the human digestive system 
includes such organs as the tongue, 
stomach, and intestines.

50 µm

10 µm

1 µm

Atoms

Cell

Chlorophyll
molecule

Chloroplast

Here are five unifying themes—ways of thinking about life 
that will still hold true decades from now.

	 Organisation
	 Information
	 Energy and Matter
	 Interactions
	 Evolution

In this section and the next, we’ll briefly define and explore 
each theme.

Concept  1.1 
The study of life reveals  
unifying themes
Biology is a subject of enormous scope, and exciting new 
biological discoveries are being made every day. How can you 
organise into a comprehensible framework all the informa-
tion you’ll encounter as you study the broad range of topics 
included in biology? Focusing on a few big ideas will help. 

 Figure 1.3  Exploring Levels of Biological Organisation 
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diversity of animals, various mushrooms 
and other fungi, and enormous numbers 
of diverse microorganisms, which are living forms such 
as bacteria that are too small to see without a microscope. 
Each of these forms of life is called a species.
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As soon as we are near enough to Earth to make out its continents and oceans, we begin to see 
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the biosphere, which consists of all the environments on Earth that are inhabited by life. The 
biosphere includes most regions of land; most bodies of water, such as oceans, lakes, and rivers; 
and the atmosphere to an altitude of several kilometres.
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Grasslands, deserts, and the ocean’s coral reefs are other types of 
ecosystems. An ecosystem consists of all the living things in a particular 
area, along with all the nonliving components of the environment 
with which life interacts, such as soil, water, atmospheric gases, and 
light. All of Earth’s ecosystems combined make up the biosphere.

▶ 4  Populations
A population consists of all the individuals of 
a species living within the bounds of a specified 
area. For example, our north-eastern Victorian 
forest includes a population of eucalypts and 
a population of koalas. We can now refine 
our definition of a community as the set of 
populations that inhabit a particular area.

▲ 5  Organisms
Individual living things are 
called organisms. Each of the trees 
and other plants in the forest is 
an organism, and so is each forest 
animal such as a frog, lizard, 
koala, and insects. The soil teems 
with microorganisms such as 
bacteria.

▶ 3  Communities
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Our next scale change—to 
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been cut on an angle. The honey-
combed tissue in the interior of the 
leaf (left side of photo) is the main 
location of photosynthesis, the 
process that converts light energy 
to the chemical energy of sugar 
and other food. We are viewing the 
sliced leaf from a perspective that 
also enables us to see the jigsaw 
puzzle-like tissue called epidermis, 
the “skin” on the surface of the 
leaf (right side of photo). The pores 
through the epidermis allow the gas 
carbon dioxide (CO2), a raw material 
for sugar production, to reach 
the photosynthetic tissue in the 
interior of the leaf. At this scale, we 
can also see that each tissue has a 
cellular structure. In fact, each kind 
of tissue is a group of similar cells.

▲ 8  Cells
The cell is life’s fundamental unit of structure and 
function. Most organisms, such as amoebas and 
most bacteria, are single cells. Some organisms, 
including plants and animals, are multicellular. 
Instead of a single cell performing all the functions 
of life, a multicellular organism has a division 
of labour among specialised cells. A human 
body consists of trillions of microscopic cells of 
many di�erent kinds, including muscle cells and 
nerve cells, which are organised into the various 
specialised tissues. For example, muscle tissue 
consists of bundles of muscle cells. And note again 
the cells of the tissue within a leaf’s interior. Each 
of the cells you see is about 25 μm (micrometres) 
across. It would take 65 of these cells to reach 
across an “O” on this page. As small as these cells 
are, you can see that each contains numerous 
green structures called chloroplasts, which are 
responsible for photosynthesis.

Chloroplasts are examples of organelles, 
the various functional components that 
make up cells. In this figure, a very powerful 
tool called an electron microscope brings a 
single chloroplast into sharp focus.

Our last scale change vaults us into a 
chloroplast for a view of life at the molecular 
level. A molecule is a chemical structure 
consisting of two or more small chemical 
units called atoms, which are represented 
as balls in this computer graphic of a 
chlorophyll molecule. Chlorophyll is the 
pigment molecule that makes a eucalypt 
leaf green. One of the most important 
molecules on Earth, chlorophyll 
absorbs sunlight during the first 
step of photosynthesis. Within each 
chloroplast, millions of chlorophylls and 
other molecules are organised into the 
equipment that converts light energy to the 
chemical energy of food. 

▶ 10  Molecules

The structural hierarchy of life continues to unfold as we 
explore the architecture of the more complex organisms. 
A eucalypt leaf is an example of an 
organ, a body part consisting of two 
or more tissues (which we’ll see upon 
our next scale change). Stems and 
roots are the other major organs of 
plants. Examples of human organs 
are the brain, heart, and kidneys. The 
organs of humans and other complex 
animals are organised into organ 
systems, each a team of organs that 
cooperate in a specific function. For 
example, the human digestive system 
includes such organs as the tongue, 
stomach, and intestines.
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▶ 9  Organelles

The entire array of organisms inhabiting 
a particular ecosystem is called a 
biological community. The community  
in our forest ecosystem includes many 
kinds of trees and other plants, a 
diversity of animals, various mushrooms 
and other fungi, and enormous numbers 
of diverse microorganisms, which are living forms such 
as bacteria that are too small to see without a microscope. 
Each of these forms of life is called a species.

               ◀ 1  The Biosphere
As soon as we are near enough to Earth to make out its continents and oceans, we begin to see 
signs of life—in the green mosaic of the planet‘s forests, for example. This is our first view of 
the biosphere, which consists of all the environments on Earth that are inhabited by life. The 
biosphere includes most regions of land; most bodies of water, such as oceans, lakes, and rivers; 
and the atmosphere to an altitude of several kilometres.

      ◀ 2  Ecosystems
As we approach Earth’s surface for an imaginary landing in north-
eastern Victoria, we can begin to make out a forest with an abundance 
of eucalypts. Such a eucalypt forest is an example of an ecosystem. 
Grasslands, deserts, and the ocean’s coral reefs are other types of 
ecosystems. An ecosystem consists of all the living things in a particular 
area, along with all the nonliving components of the environment 
with which life interacts, such as soil, water, atmospheric gases, and 
light. All of Earth’s ecosystems combined make up the biosphere.

▶ 4  Populations
A population consists of all the individuals of 
a species living within the bounds of a specified 
area. For example, our north-eastern Victorian 
forest includes a population of eucalypts and 
a population of koalas. We can now refine 
our definition of a community as the set of 
populations that inhabit a particular area.

▲ 5  Organisms
Individual living things are 
called organisms. Each of the trees 
and other plants in the forest is 
an organism, and so is each forest 
animal such as a frog, lizard, 
koala, and insects. The soil teems 
with microorganisms such as 
bacteria.

▶ 3  Communities

▼ 6  Organs and Organ Systems      ◀ 7  Tissues
Our next scale change—to 
see a leaf’s tissues—requires a 
microscope. The leaf on the left has 
been cut on an angle. The honey-
combed tissue in the interior of the 
leaf (left side of photo) is the main 
location of photosynthesis, the 
process that converts light energy 
to the chemical energy of sugar 
and other food. We are viewing the 
sliced leaf from a perspective that 
also enables us to see the jigsaw 
puzzle-like tissue called epidermis, 
the “skin” on the surface of the 
leaf (right side of photo). The pores 
through the epidermis allow the gas 
carbon dioxide (CO2), a raw material 
for sugar production, to reach 
the photosynthetic tissue in the 
interior of the leaf. At this scale, we 
can also see that each tissue has a 
cellular structure. In fact, each kind 
of tissue is a group of similar cells.

▲ 8  Cells
The cell is life’s fundamental unit of structure and 
function. Most organisms, such as amoebas and 
most bacteria, are single cells. Some organisms, 
including plants and animals, are multicellular. 
Instead of a single cell performing all the functions 
of life, a multicellular organism has a division 
of labour among specialised cells. A human 
body consists of trillions of microscopic cells of 
many di�erent kinds, including muscle cells and 
nerve cells, which are organised into the various 
specialised tissues. For example, muscle tissue 
consists of bundles of muscle cells. And note again 
the cells of the tissue within a leaf’s interior. Each 
of the cells you see is about 25 μm (micrometres) 
across. It would take 65 of these cells to reach 
across an “O” on this page. As small as these cells 
are, you can see that each contains numerous 
green structures called chloroplasts, which are 
responsible for photosynthesis.

Chloroplasts are examples of organelles, 
the various functional components that 
make up cells. In this figure, a very powerful 
tool called an electron microscope brings a 
single chloroplast into sharp focus.

Our last scale change vaults us into a 
chloroplast for a view of life at the molecular 
level. A molecule is a chemical structure 
consisting of two or more small chemical 
units called atoms, which are represented 
as balls in this computer graphic of a 
chlorophyll molecule. Chlorophyll is the 
pigment molecule that makes a eucalypt 
leaf green. One of the most important 
molecules on Earth, chlorophyll 
absorbs sunlight during the first 
step of photosynthesis. Within each 
chloroplast, millions of chlorophylls and 
other molecules are organised into the 
equipment that converts light energy to the 
chemical energy of food. 

▶ 10  Molecules

The structural hierarchy of life continues to unfold as we 
explore the architecture of the more complex organisms. 
A eucalypt leaf is an example of an 
organ, a body part consisting of two 
or more tissues (which we’ll see upon 
our next scale change). Stems and 
roots are the other major organs of 
plants. Examples of human organs 
are the brain, heart, and kidneys. The 
organs of humans and other complex 
animals are organised into organ 
systems, each a team of organs that 
cooperate in a specific function. For 
example, the human digestive system 
includes such organs as the tongue, 
stomach, and intestines.
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Zooming in through the levels of the biological hier
archy at ever-finer resolution illustrates an approach called 
reductionism. This method is so named because it reduces 
complex systems to simpler components that are more 
manageable to study. Reductionism is a powerful strategy in 
biology. For example, by studying the molecular structure 
of DNA that had been extracted from cells, James Watson 
and Francis Crick inferred the chemical basis of biological 
 inheritance. Reductionism has propelled many major 
discoveries, but it provides a necessarily incomplete view of 
life on Earth, as we’ll discuss next.

Theme: New Properties Emerge at Successive 
Levels of Biological Organisation

  Organisation    The study of life on Earth extends from 
the microscopic scale of the molecules and cells that make 
up organisms to the global scale of the entire living planet. 
As biologists, we can divide this enormous range into different 
levels of biological organisation. In Figure 1.3, we zoom in from 
space to take a closer and closer look at life in a eucalypt forest in 
eastern Victoria. This journey, depicted as a series of numbered 
steps, highlights the hierarchy of biological organisation.

 Figure 1.3  Exploring Levels of Biological Organisation 
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across. It would take 65 of these cells to reach 
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match of form and function in the structures of life is explained 
by natural selection, which we’ll explore shortly.

The Cell: An Organism’s Basic Unit  
of Structure and Function
In life’s structural hierarchy, the cell is the smallest unit of 
organisation that can perform all activities required for life. 
The so-called Cell Theory was first developed in the 1800s, 
based on the observations of many scientists. The theory 
states that all living organisms are made of cells, which are 
the basic unit of life. In fact, the actions of organisms are all 
based on the functioning of cells. For instance, the move-
ment of your eyes as you read this sentence results from the 
activities of muscle and nerve cells. Even a process that occurs 
on a global scale, such as the recycling of carbon atoms, is the 
product of cellular functions, including the photosynthetic 
activity of chloroplasts in leaf cells.

All cells share certain characteristics. For instance, every cell 
is enclosed by a membrane that regulates the passage of materi-
als between the cell and its surroundings. Nevertheless, we dis-
tinguish two main forms of cells: prokaryotic and eukaryotic. 
The cells of two groups of single-celled microorganisms— 
bacteria (singular, bacterium) and archaea (singular, archaean)—
are prokaryotic. All other forms of life, including plants and 
animals, are composed of eukaryotic cells.

A eukaryotic cell contains membrane-enclosed organelles 
(Figure 1.4). Some organelles, such as the DNA-containing 
nucleus, are found in the cells of all eukaryotes; other organelles 

Emergent Properties
Let’s reexamine Figure 1.3, beginning this time at the molecu-
lar level and then zooming out. This approach allows us to 
see novel properties emerge at each level that are absent from 
the preceding one. These emergent properties are due 
to the arrangement and interactions of parts as complexity 
increases. For example, although photosynthesis occurs in 
an intact chloroplast, it will not take place in a disorganised 
test-tube mixture of chlorophyll and other chloroplast mol-
ecules. The coordinated processes of photosynthesis require 
a specific organisation of these molecules in the chloroplast. 
Isolated components of living systems—the objects of study 
in a reductionist approach—lack a number of significant 
properties that emerge at higher levels of organisation.

Emergent properties are not unique to life. A box of bicycle 
parts won’t transport you anywhere, but if they are arranged 
in a certain way, you can pedal to your chosen destination. 
Compared with such nonliving examples, however, biologi-
cal systems are far more complex, making the emergent 
properties of life especially challenging to study.

To fully explore emergent properties, biologists today 
complement reductionism with systems biology, the 
exploration of a biological system by analysing the interactions 
among its parts. In this context, a single leaf cell can be considered 
a system, as can a frog, an ant colony, or a desert ecosystem. By 
examining and modeling the dynamic behaviour of an integrated 
network of components, systems biology enables us to pose 
new kinds of questions. For example, how do networks of 
molecular interactions in our bodies generate our 24-hour cycle of 
wakefulness and sleep? At a larger scale, how does a gradual increase 
in atmospheric carbon dioxide alter ecosystems and the entire 
biosphere? Systems biology can be used to study life at all levels.

Structure and Function
At each level of the biological hierarchy, we find a correlation 
of structure and function. Consider a leaf in Figure 1.3: 
Its thin, flat shape maximises the capture of sunlight by 
chloroplasts. Because such correlations of structure and 
function are common in all forms of life, analysing a biological 
structure gives us clues about what it does and how it works. 
Conversely, knowing the function of something provides 

insight into its structure and organisation. 
Many examples from the animal kingdom 
show a correlation between structure and 

function. For example, the hummingbird’s 
anatomy allows the wings to rotate at 

the shoulder, so hummingbirds have 
the ability, unique among birds, to 

fly backwards or hover in place. 
While hovering, the birds can 

extend their long, slender 
beaks into flowers and feed 
on nectar. The elegant 

Eukaryotic cell

Membrane

Membrane-
enclosed organelles

DNA (throughout
nucleus)

Nucleus
(membrane-
enclosed)

Cytoplasm

1 μm

Prokaryotic cell

DNA
(no nucleus)

Membrane

 Figure 1.4  Contrasting eukaryotic and prokaryotic cells in 
size and complexity. The cells are shown to scale here; to see a larger 
magnification of a prokaryotic cell, see Figure 6.5.

VISUAL SKILLS  Measure the scale bar and use its length to estimate the 
length of the prokaryotic cell and the longest dimension of the eukaryotic cell.
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are specific to particular cell types. For example, the chloroplast 
in Figure 1.3 is an organelle found only in eukaryotic cells 
that carry out photosynthesis. In contrast to eukaryotic cells, a 
prokaryotic cell lacks a nucleus or other membrane-enclosed 
organelles. Furthermore, prokaryotic cells are generally smaller 
than eukaryotic cells, as shown in Figure 1.4.

Egg 
cell

Sperm cell

Nuclei containing DNA

Fertilised egg
with DNA from
both parents Embryo’s cells

with copies of
inherited DNA

Offspring with 
traits inherited 
from both parents

 Figure 1.6  Inherited DNA directs development of an 
organism. 

(a)

A

A

T

A

T

A

T

A

T

C

C

C

G

G

DNA double helix. This
model shows the atoms
in a segment of DNA. Made
up of two long chains (strands) 
of building blocks called
nucleotides, a DNA molecule
takes the three-dimensional
form of a double helix.

Single strand of DNA. These
geometric shapes and letters are
simple symbols for the nucleo-
tides in a small section of one
strand of a DNA molecule. Genetic
information is encoded in specific
sequences of the four types of
nucleotides: adenine (A), guanine
(G), cytosine (C), and thymine (T).

(b)

Nucleotide

Nucleus

Cell

DNA

 Figure 1.7  DNA: The genetic material. 10
 μ

m

 Figure 1.5  A lung cell from a newt divides into  
two smaller cells that will grow and divide again. 

DNA, the Genetic Material
Before a cell divides, the DNA is first replicated, or copied, and 
each of the two cellular offspring inherits a complete set of chro-
mosomes, identical to that of the parent cell. Each chromosome 
contains one very long DNA molecule with hundreds or thou-
sands of genes, each a section of the DNA of the chromosome. 
Transmitted from parents to offspring, genes are the units of 
inheritance. They encode the information necessary to build all 
of the molecules synthesised within a cell, which in turn estab-
lish that cell’s identity and function. You began as a single cell 
stocked with DNA inherited from your parents. The replication 
of that DNA prior to each cell division transmitted copies of the 
DNA to what eventually became the trillions of cells of your 
body. As the cells grew and divided, the genetic information 
encoded by the DNA directed your development (Figure 1.6).

The molecular structure of DNA accounts for its ability 
to store information. A DNA molecule is made up of two 
long chains, called strands, arranged in a double helix. Each 
chain is made up of four kinds of chemical building blocks 
called nucleotides, which are named adenine (A), guanine 
(G), cytosine (C), and thymine (T)  (Figure 1.7). Specific 
sequences of these four nucleotides encode the information 

Theme: Life’s Processes Involve the 
Expression and Transmission of Genetic 
Information
  Information    Within cells, structures called chromo-
somes contain genetic material in the form of DNA  
(deoxyribonucleic acid). In cells that are preparing  
to divide, the chromosomes may be made visible using a dye 
that appears blue when bound to the DNA (Figure 1.5).
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in genes. The way DNA encodes information is analogous to 
how we arrange the letters of the alphabet into words and 
phrases with specific meanings. The word rat, for example, 
evokes a rodent; the words tar and art, which contain the 
same letters, mean very different things. We can think of 
nucleotides as a four-letter alphabet.

For many genes, the sequence provides the blueprint for 
making a protein. For instance, a given bacterial gene may 
specify a particular protein (an enzyme) required to break 
down a certain sugar molecule, while a human gene may 
denote a different protein (an antibody) that helps fight off 
infection. Overall, proteins are major players in building and 
maintaining the cell and carrying out its activities.

Protein-encoding genes control protein production indi-
rectly, using a related molecule called RNA (ribonucleic acid) 
as an intermediary (Figure 1.8). The sequence of nucleotides 
along a gene is transcribed into mRNA (messenger RNA), 
which is then translated into a linked series of protein 
building blocks called amino acids. Once completed, the 
amino acid chain forms a specific protein with a unique 
shape and function. The entire process by which the informa-
tion in a gene directs the manufacture of a cellular product is 
called gene expression.

In carrying out gene expression, all forms of life employ 
essentially the same genetic code: A particular sequence of 
nucleotides says the same thing in one organism as it does 
in another. Differences between organisms reflect differ-
ences between their nucleotide sequences rather than between 
their genetic codes. This universality of the genetic code is a 
strong piece of evidence that all life is related. Comparing the 
sequences in several species for a gene that codes for a particular  
protein can provide valuable information both about the 
protein and about the relationship of the species to each other.

The mRNA molecule in Figure 1.8 is translated into a 
protein, but other cellular RNAs function differently. For 
example, we have known for decades that some types of 
RNA are actually components of the cellular machinery that 
manufactures proteins. Recently, scientists have discovered 
whole new classes of RNA that play other roles in the cell, such 
as regulating the functioning of protein-coding genes. Genes 
specify all of these RNAs as well, and their production is also 
referred to as gene expression. By carrying the instructions 
for making proteins and RNAs and by replicating with each 
cell division, DNA ensures faithful inheritance of genetic 
information from generation to generation.

Genomics: Large-Scale Analysis  
of DNA Sequences
The entire “library” of genetic instructions that an organism 
inherits is called its genome. A typical human cell has two 
similar sets of chromosomes, and each set has approximately 
3 billion nucleotide pairs of DNA. If the one-letter abbrevia-
tions for the nucleotides of a set were written in letters the 

Lens 
cell

The lens of the eye (behind 
the pupil) is able to focus 
light because lens cells are 
tightly packed with transparent 
proteins called crystallin. How 
do lens cells make crystallin 
proteins?

The crystallin 
gene is a 
section of DNA 
in a chromosome.

DNA
(part of the 
crystallin gene)

Using the information in the sequence of 
DNA nucleotides, the cell makes (transcribes) 
a specific RNA molecule called mRNA.

The cell translates the information in the 
sequence of mRNA nucleotides to make a 
protein, a series of linked amino acids.

The chain of amino 
acids folds into the 
specific shape of a 
crystallin protein. 
Crystallin proteins can 
then pack together and 
focus light, allowing 
the eye to see.

Crystallin gene

Crystallin protein
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(b) A lens cell uses information in DNA to make crystallin proteins.

 Figure 1.8  Gene expression: Cells use information 
encoded in a gene to synthesise a functional protein. 

Figure Walkthrough
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Theme: Life Requires the Transfer and 
Transformation of Energy and Matter

  Energy and Matter    A fundamental characteristic of  
living organisms is their use of energy to carry out life’s 
activities. Moving, growing, reproducing, and the various 
cellular activities of life are work, and work requires energy. 
The input of energy, primarily from the sun, and the trans-
formation of energy from one form to another make life 
possible (Figure 1.9). When a plant’s leaves absorb sun-
light, molecules within the leaves convert the energy of 
sunlight to the chemical energy of food, such as sugars, in 
the process of photosynthesis. The chemical energy in the 
food molecules is then passed along by plants and other 
photosynthetic organisms (producers) to consumers. 
Consumers are organisms, such as animals, that feed on 
other organisms or their remains.

When an organism uses chemical energy to perform work, 
such as muscle contraction or cell division, some of that 
energy is lost to the surroundings as heat. As a result, energy 
flows through an ecosystem in one direction, usually entering 
as light and exiting as heat. In contrast, chemicals cycle within 
an ecosystem, where they are used and then recycled (see 
Figure 1.9). Chemicals that a plant absorbs from the air or soil 
may be incorporated into the plant’s body and then passed 
to an animal that eats the plant. Eventually, these chemicals 
will be returned to the environment by decomposers such as 
bacteria and fungi that break down waste products, leaf litter, 
and the bodies of dead organisms. The chemicals are then 
available to be taken up by plants again, thereby completing 
the cycle.

size of those you are now reading, the genomic text would fill 
about 700 biology textbooks.

Since the early 1990s, the pace at which researchers can 
determine the sequence of a genome has accelerated at an 
astounding rate, enabled by a revolution in technology. 
The genome sequence—the entire sequence of nucleotides 
for a representative member of a species—is now known for 
humans and many other animals, as well as numerous plants, 
fungi, bacteria, and archaea. To make sense of the deluge of 
data from genome-sequencing projects and the growing 
catalogue of known gene functions, scientists are applying a 
systems biology approach at the cellular and molecular levels. 
Rather than investigating a single gene at a time, researchers  
study whole sets of genes (or other DNA) in one or more 
species—an approach called genomics. Likewise, the term 
proteomics refers to the study of sets of proteins and their 
properties. (The entire set of proteins expressed by a given 
cell, tissue, or organism is called a proteome.)

Three important research developments have made the 
genomic and proteomic approaches possible. One is “high-
throughput” technology, tools that can analyse many bio-
logical samples very rapidly. The second major development 
is bioinformatics, the use of computational tools to store, 
organise, and analyse the huge volume of data that results from 
high-throughput methods. The third development is the for-
mation of interdisciplinary research teams—groups of diverse 
specialists that may include computer scientists, mathemati-
cians, engineers, chemists, physicists, and, of course, biologists 
from a variety of fields. Researchers in such teams aim to learn 
how the activities of all the proteins and RNAs encoded by the 
DNA are coordinated in cells and in whole organisms.

Light
energy
comes from
the sun.

Plants
convert
sunlight to
chemical
energy. Organisms use

chemical energy
to do work.

Chemicals

ENERGY FLOW

Heat is lost
from the
ecosystem.

Chemicals in 
plants are passed 
to organisms that 
eat the plants.

Plants take up 
chemicals from 
the soil and air.

Decomposers
such as fungi and 
bacteria break 
down leaf litter 
and dead 
organisms, 
returning 
chemicals to the 
soil.

   
   

   
    

    
    C
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 Figure 1.9  Energy flow 
and chemical cycling. There 
is a one-way flow of energy in an 
ecosystem: During photosynthesis, 
plants convert energy from 
sunlight to chemical energy (stored 
in food molecules such as sugars), 
which is used by plants and other 
organisms to do work and is 
eventually lost from the ecosystem 
as heat. In contrast, chemicals 
cycle between organisms and the 
physical environment.
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